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1. Introduction

In many situations, failure of a unit during actual operation is costly or danger-
ous. Replacement policies are followed to reduce the incidence of system failure.
Some useful replacement policies in popular use are the age replacement policy
and the block replacement policy. Under an age replacement policy, a unit is
replaced upon failure or at age T, a speci�ed positive constant, whichever comes
�rst. Under block replacement policy, a unit is replaced upon a failure and at
times T, 2T, 3T,...

Age replacement is administratively more di¢ cult to implement, since the age of
the unit must be recorded. Block replacement is simpler to administer since the
age of the unit need not to be recorded. It leads to more frequent replacement of
relatively new items. This type of policy is commonly used with computers and
other complex electronic systems. On the other hand, age replacement is more
�exible since planned replacement takes into account the age of the unit under



this policy. Therefore, it is some of interest to compare these two policies with
respect to the number of failures, the number of planned replacements, and the
number of removals. Age and block replacement policies have been investigated
by Barlow and Proschan (1975) and Yue and Cao (2001), among others. All
the replacements can be treated by the techniques of renewal theory. Before
investigating the replacement problem, it is necessary to present some classes of
life distributions and the renewal theory.

2. Some Classes of Life Distributions

Assume that the life length of a unit has a distribution function F with F (x) = 0
for x < 0. The corresponding survival function is denoted by F = 1� F .

Increasing (Decreasing) Failure Rate

A distribution function F is IFR (DFR) if for all x > 0, F (x+t)=F (t) is decreas-
ing (increasing) in t whenever t � 0 and F (t) > 0. If F has a density function
f , then this is equivalent to the condition that the failure rate r(t) = f(t)=F (t)
is increasing (decreasing) in t on

�
t : F (t) > 0

	
.

New Better (Worse) Than Used

A distribution function F is NBU (NWU) if

(1) F (x+ y) � (�)F (x) F (y)

for x � 0; y � 0. Equality in (1) holds if and only if F is the exponential
distribution function.

New Better (Worse) Than Used in Expectation

A distribution function F is NBUE (NWUE) if
i) F has �nite (or in�nite mean) �,
ii)
R1
t
F (x) dx � (�)�F (t) for t � 0

where
R1
t
[F (x)=F (t) ] dx represents the conditional mean remaining life of a

unit of age t.

It is well known that
IFR) NBU ) NBUE;

and
DFR) NWU ) NWUE:



New Better (Worse) Than Used in Laplace Ordering

Let X and Y be two nonnegative random variables with distribution functions
F and G, respectively. It is said that X is smaller than Y (or F is smaller than
G) with respect to Laplace order �L, denoted by X �L Y (F �L G) ifZ 1

0

e�stdF (t) �
Z 1

0

e�stdG(t); s � 0:

Let Xt denote the residual life of X at age t � 0. The nonnegative random vari-
able X is said to be NBUL(NWUL) if and only if Xt �L (�L)X or equivalentlyZ 1

0

e�sxF (t+ x)dx � (�)F (t)
Z 1

0

e�sxF (x)dx:

Wang (1996) has shown that the following expressions hold;

NBU ) NBUL) NBUE; NWU ) NWUL) NWUE:

3. Renewal Theory

A renewal process is a sequence of independent, identically distributed, nonneg-
ative random variables X1; X2; :::, which, with probability 1, are not all zero.
Let F be the distribution function of X1; F is called the underlying distribution
function of the renewal process. F k�, the k-fold Stieltjes convolution of F with
itself, is the distribution function of Sk � X1 +X2 + :::+Xk.

Renewal theory is primarily concerned with the number of renewals N(t) in
[0; t]. N(t), the renewal random variable is the maximum value of k for which
Sk � t. The stochastic process fN(t); t � 0g is also known as a renewal count-
ing process (Ross 1983).

It is known that P (N(t) � n) = P (Sn � t) = Fn�(t) for n = 0; 1; ::: . It follows
that P (N(t) = n) = P (N(t) � n)� P (N(t) � n+ 1), so that

P (N(t) = n) = Fn�(t)� F (n+1)�(t) ; n = 0; 1; ::: :

The mean value function (renewal function) of the renewal process fN(t); t � 0g
is;

M(t) = E(N(t))

=

1X
k=1

P (N(t) � k)

=
1X
k=1

F k�(t) ; t � 0:



It is well known that the renewal function M(t) satis�es the integral equation
(renewal equation);

(2) M(t) = F (t) +

Z t

0

M(t� x)dF (x); t � 0:

If F has a density f , di¤erentiation of (2) yields

m(t) = f(t) +

Z t

0

m(t� x)f(x)dx; t � 0;

where m(t) = d
dtM(t) is known as the renewal density.

Note that N(t) is the number of renewals in [0; t], and the next arrival will be
that numbered N(t) + 1. That is to say, we have begun our observation at
a point in the random interval It = [SN(t); SN(t)+1), the endpoints of which
are arrival times. E(t) = SN(t)+1 � t is called the excess lifetime at t and
C(t) = t � SN(t) is called the current lifetime (or age) at t (Grimmett and
Stirzaker 1992). That is, E(t) is the time which elapses before the next arrival.
C(t) is the elapsed time since the last arrival. It is known that P (C(t) � t) = 1
and P (C(t) = t) = 1� F (t). Since E(t� y) > y if and only if no arrivals occur
in (t� y; t], P (C(t) � y) = P (E(t� y) � y), y < t.

Renewal Reward Processes

Consider a renewal process fN(t); t � 0g having interarrival times Xn; n � 1
with distribution function F , and suppose that each time a renewal occurs we
receive a reward. Let Rn denote the reward earned at the time of the nth
renewal. It is assumed that the Rn; n � 1, are independent and identically
distributed. However, it is allowed for the possibility that Rn may depend on
Xn, the length of the nth renewal interval, and so it is assumed that the pairs
(Xn; Rn); n � 1, are independent and identically distributed. We consider
fR(t); t � 0g where R(t) =

PN(t)
n=1 Rn. Then, R(t) represents the total reward

earned by time t. If E(jRj) <1 and E(X) <1, then as t!1,
i)R(t)=t! E(R)=E(X) with probability 1,
ii)E(R(t))=t! E(R)=E(X)

where E(R) = E(Rn) and E(X) = E(Xn) (Ross 1983). This theorem is known
in the literature as renewal-reward theorem.

4. Age and Block Replacement Policies

We will assume for both policies that units fail permanently, independently and
that the time required to perform replacement is negligibly small.



Age Replacement Policy

Under an age replacement policy, a unit is replaced upon failure or at age T,
whichever comes �rst. Denote the number of failures in [0; t] by N(t) and let
fXig1i=1 represent the durations between successive failures with distribution
function F . Denote the total number of removals in [0; t] by NA(t; T ) under
age replacement policy with replacement interval T , and denote the number
of failures in [0; t] by N

0

A(t; T ) under age replacement policy with replacement
interval T .

Theorem 4.1. (Karlin and Taylor 1975) fNA(t; T ); t � 0g is a renewal process
with interrenewal time distribution function

FA(x) =

�
F (x); x < T
1; x � T

and the mean renewal duration is
R T
0
(1� F (x)) dx.

Proof: Let fYig1i=1 denote the durations between successive removals. Then,
Yi = minfXi; Tg for i = 1; 2; ::: . Since Xi, i = 1; 2; :::, are independent
identically distributed, Yi, i = 1; 2; :::, are independent identically distributed
as well. Thus, fNA(t; T ); t � 0g is a renewal process. It is clear that (Y1 >
y) � (X1 > y; T > y). Therefore,

P (Y1 > y) =

�
F (y); T > y
0; T � y

is acquired. Hence,

FA(x) =

�
F (x); x < T
1; x � T

Also, E(Y1) =
R1
0
(1� FA(y)) dy =

R T
0
(1� F (x)) dx.

Theorem 4.2. (Barlow and Proschan 1975) fN 0

A(t; T ); t � 0g is a renewal
process with interrenewal time distribution function,

GA(x) = 1� F (T )n F (x� nT ); nT � x � (n+ 1)T; n = 0; 1; :::

and the renewal duration has the expectation 1
F (T )

R T
0
(1� F (x)) dx.

Proof: Let fYig1i=1 denote the durations between unplanned failures under
age replacement policy. According to the process, from the time that an un-
planned failure occurs, the process continues probabilistically in the same way.
Therefore, fYig1i=1 random variables are independent identically distributed.

P (Y1 > x) = P (X1 > x) = F (x), for 0 < x < T ,



P (Y1 > x) = P (X1 > T; X2 > x� T ) = F (T )F (x� T ), for T < x < 2T ,

P (Y1 > x) = P (X1 > T; X2 > T; X3 > x � 2T ) = F (T )F (T )F (x � 2T ), for
2T < x < 3T .

In general it can be written as

P (Y1 > x) = F (T )
n F (x� nT ); nT � x � (n+ 1)T; n = 0; 1; :::

It follows that

GA(x) = 1� F (T )n F (x� nT ); nT � x � (n+ 1)T; n = 0; 1; :::

Also, the expectation of Y1 is

E(Y1) =

Z T

0

F (x) dx+

Z 2T

T

F (T )F (x� T ) dx+
Z 3T

2T

F (T )2 F (x� 2T ) dx+ :::

=

1X
n=0

Z (n+1)T

nT

F (T )n F (x� nT ) dx

=
1X
n=0

F (T )n
Z T

0

F (y) dy =
1

F (T )

Z T

0

F (y) dy :

An Optimal Policy for Age Replacement

We assume an age replacement which is basic for controlling items that are
subject to stochastic breakdowns. A cost of cp > 0 is incurred for each planned
replacement and a cost of cf for each failure replacement where cf > cp. Under
age replacement policy, it is obvious that the cost incurred during one replace-
ment cycle is the random variable Y which is

Y =

�
cf ; X1 < T
cp; X1 � T:

E(Y ) = cf F (T ) + cp (1� F (T )):

Hence, by the renewal-reward theorem,

the long � run average cost per unit time = cp + (cf � cp)F (T )R T
0
(1� F (x)) dx

with probability 1. By putting the derivative of the average cost function equal
to zero, it is veri�ed that the minimizing value of T is the unique solution to
the equation

r(T )

Z T

0

(1� F (x)) dx� F (T ) = cp
cf � cp



where r(T ) is the failure rate function de�ned by r(T ) = f(T )=F (T ), and it
is assumed that this function is continuous and strictly increasing to in�nity
(Tijms 1995).

Denote the long-run average cost per unit time for the age replacement rule
with limit T by g(T ) and let T � be the optimal value of T . Then,

g(T �) =
cp + (cf � cp F (T �))R T�
0
(1� F (x)) dx

and

r(T �)

Z T�

0

(1� F (x)) dx� F (T �) = cp
cf � cp

:

Thus,

g(T �) =
cp + (cf � cp)F (T �)
cp

cf�cp
1

r(T�) +
F (T�)
r(T�)

= (cf � cp) r(T �):

Block Replacement Policy

Under a block replacement policy, a unit is replaced by a new one upon failure
and upon scheduled times T; 2T; ::: . There is always a replacement at the sched-
uled times regardless of the age of the item in use. Denote the total number of
removals in [0; t] by NB(t; T ) under block replacement policy with replacement
interval T , and denote the number of failures in [0; t] by N

0

B(t; T ) under block
replacement policy with replacement interval T .

While fNA(t; T ); t � 0g and fN
0

A(t; T ); t � 0g are renewal processes, fNB(t; T ); t �
0g is not a renewal process.

Let the times between removals be fYig1i=1 in fNB(t; T ); t � 0g. Then,

Y1 = minfX1; Tg

Y2 =

�
minfX2; Tg; Y1 = T
minfX2; T �X1g; Y1 = X1:

It is easily obtained that

FY1(y) =

�
F (y); y < T
1; y � T

and

FY2(y) =

�
F (y) + (1� F (y))(F (T )� F (T � y)); y < T
1; y � T:



As we see from the distribution functions of Y1 and Y2, they are not identically
distributed. Hence, fNB(t; T ); t � 0g process cannot be a renewal process.
Furthermore, the counting process fN 0

B(t; T ); t � 0g is also not a renewal
process.
´
An Optimal Policy for Block Replacement

Assume that the cost structure is the same as in the age replacement policy.
The stochastic process describing the age of the item in use is regenerative. The
length of one cycle is T . Further,

E(Y ) = cp + cfM(T )

where the random variable Y is the cost that is incurred during one replacement
cycle and M denotes the renewal function associated with the lifetime distri-
bution function F . This follows by noting that the number of renewals up to
time T in the renewal process generated by the lifetimes X1; X2; ::: is nothing
else than the number of failure replacements up to time T . Hence, for the block
replacement with parameter T ,

the long � run average cost per unit time = 1

T
fcp + cfM(T )g

with probability 1 (Tijms 1995). If the T value which makes this function min-
imum exists, then the policy that we use with this T value is the optimal policy
for the block replacement.

Replacement Comparisons

It is useful to compare block replacement with age replacement, using replace-
ment interval T for both of them. For example, block replacement is more
wasteful since more unfailed components are removed than under age replace-
ment. Under the IFR assumption, the expected number of failures will be less
under block replacement. The following theorem, true for all distributions, is
intuitively obvious.

Theorem 4.3. P (N(t) � n) � P (NA(t; T ) � n) � P (NB(t; T ) � n) for all
t � 0, n = 0; 1; ::: .

Proof: Let fXig1i=1 represent the durations between successive failures. Let
SAn (S

B
n ) denote the time of the nth removal under age (block) replacement pol-

icy.

Y B1 = minfX1; Tg,

Y B2 = minfX2; �2g, 0 � �2 � T ,



Y B3 = minfX3; �3g, 0 � �3 � T ,

generally, we have Y nB = minfXn; �ng, for 0 � �n � T under block replacement
policy, where �n is the remaining life to a planned renewal after (n � 1)th
removal. Under age replacement policy; Y An = minfXn; Tg for n = 1; 2; ::: .
Then,

SAn = S
A
n�1 +minfXn; Tg; SBn = S

B
n�1 +minfXn; �ng:

Since initially SA1 = S
B
1 ; Sn � SAn � SBn . Thus, the proof is completed (Barlow

and Proschan 1963).

Let X and Y be any two random variables. It is said that the random vari-
able X is stochastically larger than the random variable Y , written X �st Y ,
if P (X > a) � P (Y > a) for all a. Also from Theorem 4.3 we have N(t) �st
NA(t; T ) �st NB(t; T ) which means that the number of removals in [0; t] inter-
val under block replacement policy is stochastically bigger than the number of
removals under age replacement policy.

Corollary: M(t) � E(NA(t; T )) � E(NB(t; T )).

This corollary is an immediate consequence of Theorem 4.3.

It is shown by Barlow and Proschan (1963) that if F is IFR, then

P (N(t) � n) � P (N
0

A(t; T ) � n) � P (N
0

B(t; T ) � n)

for t � 0 and n = 0; 1; ::: which means N(t) �st N
0

A(t; T ) �st N
0

B(t; T ). Equality
is attained for the exponential distribution F (x) = 1� e�x=�1 where �1 denotes
the mean of F . As a consequence of this, we have M(t) � E(N

0

A(t; T )) �
E(N

0

B(t; T )).

Theorem 4.4. N(t) �st N
0

A(t; T ) for all t � 0, T � 0 , F is NBU (Barlow
and Proschan, 1975).

Theorem 4.4 states that the class of NBU distributions is the largest class for
which age replacement diminishes stochastically the number of failures expe-
rienced in any particular time interval [0; t]. In this sense, the NBU class of
distributions is a natural class to consider in age replacement.

Let F be IFR. For �xed T > 0, we know that fN 0

A(t; T ); t � 0g is a renewal
process with underlying distribution function FA(t;T ) = 1�F (T )n F (x� nT ),
where nT � x � (n + 1)T for n = 0; 1; ::: . By di¤erentiating FA(t;T ) with
respect to T , it is veri�ed that FA(t;T ) is increasing in T � 0 for �xed t � 0.
Hence P (N

0

A(t; T ) � n) = Fn�A (t;T ) is increasing in T � 0 for �xed t � 0,
where Fn�A (t;T ) is the n-fold Stieltjes convolution of FA(t;T ) with itself (Bar-
low and Proschan 1975). Thus, under age replacement policy with an IFR failure



distribution, the number of failures observed in any interval [0; t] increases sto-
chastically as the replacement interval T increases. Also, the direct contrary is
true (Marshall and Proschan 1972).

Lemma 4.1. Consider two policies such that the planned replacements oc-
cur at �xed time points ft1; t2; :::g under policy 1, and at the time points
ft1; t2; :::g [ ft0g under policy 2, where 0 < t1 < t2; ::: . Let Ni(t) be the
number of failures in [0; t] under policy i, i = 1; 2. Then N1(t) �st N2(t) for
each t � 0 if and only if the underlying life distribution function F is NBU
(Barlow and Proschan 1975).

Theorem 4.5. N(t) �st N
0

B(t; T ) for all t � 0, T � 0 , F is NBU (Barlow
and Proschan 1975).

Theorem 4.5 states that the class of NBU distributions is the largest class for
which block replacement diminishes stochastically the number of failures in any
particular time interval [0; t], 0 < t <1.

We know that under age replacement policy, the number of failures observed in
any interval [0; t] increases stochastically as the replacement interval T increases
if and only if F is IFR. Under block replacement policy, it is shown by Shaked
and Zhu (1992) that the stochastic increasingness of N

0

B(t; T ) in T � 0, for each
�xed t � 0, is a su¢ cient condition for F to be IFR, but it is not a necessary
condition. Suppose that fN 0

B(t; T )g increases stochastically as the replacement
interval T increases for �xed t � 0. Hence, P (N 0

B(t; T2) � n) � P (N
0

B(t; T1) �
n) for T1 � T2. We choose n = 1, then it is clear that

P (N
0

B(t; T2) = 0) = 1� P (N
0

B(t; T2) � 1)
� 1� P (N

0

B(t; T1) � 1)
= P (N

0

B(t; T1) = 0):

Let T1 � T2 � 2T1 and we choose t such that T1 � T2 � t � 2T1. Since
P (N

0

B(t; T1) = 0) = F (T1)F (t � T1) and P (N
0

B(t; T2) = 0) = F (T2)F (t � T2),
we have

(3) F (T1)F (t� T1) � F (T2)F (t� T2):

We need to show F (x+�)=F (x) � F (y+�)=F (y) for any given y � x � 0 and
� � 0.

i) Let � > y�x. Then, we take T1 = x+�, T2 = y+� and t = x+y+�.
Then, T1, T2 and t hold 0 � T1 � T2 � t � 2T1. Since t � T1 = y, t � T2 = x,
T1 = x+� and T2 = y +�, by (3) we have F (x+�)=F (x) � F (y +�)=F (y).

ii) Let � � y � x. Then, we take T1 = y, T2 = y +� and t = x+ y +�.
Then, T1, T2 and t hold 0 � T1 � T2 � t � 2T1. Since t�T1 = x+�, t�T2 = x,
T1 = y and T2 = y +�, by (3) we have F (x+�)=F (x) � F (y +�)=F (y).



Hence, if N
0

B(t; T ) "st in T � 0 for each �xed t � 0, then F is IFR.

Now, some comparisons are given for age and block replacement policies under
the assumption that the underlying distribution function F is NBUL or NWUL
due to Yue and Cao (2001).

Let fXig1i=1 and fYig
1
i=1 denote the interrenewal times for the renewal processes

fN(t); t � 0g and
n
N

0

A(t); t � 0
o
. It is obvious that

X1 �L (�L)Y1 , Xi �L (�L)Yi i = 1; 2; ::: :

Theorem 4.6. F is NBUL(NWUL) , X1 �L (�L)Y1.

Proof: We know from Theorem 4.2 that P (Y1 > x) = F (T )n F (x�nT ); nT �
x � (n+ 1)T; n = 0; 1; ::: . Thus,Z 1

0

e�sx P (Y1 > x) dx =
1X
n=0

Z (n+1)T

nT

e�sx F (T )n F (x� nT ) dx

=
1X
n=0

[F (T ) e�sT ]n
Z T

0

e�sx F (x) dx

=

Z T

0

e�sx F (x) dx =[1� e�sT F (T )]:

From the de�nition of Laplace ordering we have

X1 �L (�L)Y1 ,
Z 1

0

e�sx F (x) dx � (�)
Z 1

0

e�st P (Y1 > x) dx:

Hence,

X1 �L (�L)Y1 ,
Z 1

0

e�sx F (x) dx � (�)
Z T

0

e�sx F (x) dx =[1� e�sT F (T )]:

This is equivalent to F is NBUL(NWUL) (Yue and Cao 2001).

Let fN1(t); t � 0g and fN2(t); t � 0g be two counting processes such thatZ 1

0

e�st P (N1(t) � n) dt �
Z 1

0

e�st P (N2(t) � n) dt

for all s > 0 and n = 0; 1; :::. Then, fN1(t); t � 0g is said to be smaller than
fN2(t); t � 0g in Laplace order and denoted as N1(t) �L N2(t).

Theorem 4.7. Let fN1(t); t � 0g and fN2(t); t � 0g be two renewal processes.
X1
i andX

2
i denote the duration between (i�1)th and ith renewal for fN1(t); t �

0g and fN2(t); t � 0g, respectively. Then, N2(t) �L N1(t) if and only if



X1
i �L X2

i , i = 1; 2; ::: .

Proof: \) \ :Z 1

0

e�st P (N1(t) � 1) dt �
Z 1

0

e�st P (N2(t) � 1) dt

or equivalentlyZ 1

0

e�st P (N1(t) = 0) dt �
Z 1

0

e�st P (N2(t) = 0) dt :

Observing that P (Nk(t) = 0) = P (Xk
i > t) for k = 1; 2 and i = 1; 2; ::: we haveZ 1

0

e�st P (X1
i > t) dt �

Z 1

0

e�st P (X2
i > t) dt :

Thus, X1
i �L X2

i , i = 1; 2; ::: .

\ ( \ : We have
nP
i=1

X1
i �L

nP
i=1

X2
i (Alzaid, Kim and Proschan 1991), or

equivalentlyZ 1

0

e�st P (
nX
i=1

X1
i > t) dt �

Z 1

0

e�st P (
nX
i=1

X2
i > t) dt:

Hence, Z 1

0

e�st P (

nX
i=1

X1
i � t) dt �

Z 1

0

e�st P (

nX
i=1

X2
i � t) dt:

It follows thatZ 1

0

e�st P (N1(t) � n) dt �
Z 1

0

e�st P (N2(t) � n) dt

for all s > 0 and n = 1; 2; ::: . Thus, N2(t) �L N1(t) (Yue and Cao 2001).

As a consequence of Theorem 4.6 and Theorem 4.7 we have;

N(t) �L (�L)N
0

A(t; T ), F is NBUL(NWUL),

which states that the age replacement diminishes (increases) , in the sense
of Laplace order, the number of failures in any particular time interval [0; t],
0 < t <1, if and only if F is NBUL(NWUL).

Lemma 4.2. Let planned replacements occur at �xed time points f0 < t1 <
t2 < :::g under policy 1, and at time points f0 < t1 < t2 < :::g [ ft0g under
policy 2. Let Ni(t) be the number of failures in [0; t] under policy i, i = 1; 2.



Then, N1(t) �L (�L)N2(t) for each t � 0 if and only if the underlying life
distribution F is NBUL(NWUL).

The proof of Lemma 4.2 is similar to that of Lemma 4.1. The next theorem
given by Yue and Cao (2001) states that the block replacement diminishes (in-
creases), in the sense of Laplace order, the number of failures experienced in any
particular time interval [0; t], 0 < t <1, if and only if F is NBUL(NWUL).

Theorem 4.8. N(t) �L (�L)N
0

B(t; T ), t � 0, T � 0, F is NBUL(NWUL).

Proof: \( \ : Let planned replacements occur at �xed time points f0; T; :::; (i�
1)Tg under policy i, i = 1; 2; ::: . Let Ni(t) be the number of failures in [0; t]
under policy i, i = 1; 2; ::: . It follows from Lemma 4.2 that N(t) = N1(t) �L
N2(t) �L ::: �L Nk(t) �L ::: . As k !1, we have N(t) �L N

0

B(t; T ).

\) \ : It is clear thatZ 1

0

e�st P (N(t) � 1) dt �
Z 1

0

e�st P (N
0

B(t; T ) � 1) dt:

Hence,

(4)
Z 1

0

e�st P (N(t) = 0) dt �
Z 1

0

e�st P (N
0

B(t; T ) = 0) dt:

Observing that

P (N
0

B(t; T ) = 0) = P (X1 > T; :::;Xk > T;Xk+1 > t� kT )
= F (T )k F (t� kT )

for kT � t < (k + 1)T , k = 0; 1; ::: . Then,Z 1

0

e�st P (N
0

B(t; T ) = 0) dt =
1X
k=0

Z (k+1)T

kT

e�st F (T )k F (t� kT ) dt

=
1X
k=0

[F (T ) e�sT ]k
Z T

0

e�st F (t) dt

=

Z T

0

e�st F (t) dt=(1� e�sT F (T )):

Noting that
R1
0
e�st P (N(t) = 0) dt =

R1
0
e�st F (t) dt and from (4) we obtainZ 1

0

e�st F (t) dt �
R T
0
e�st F (t) dt

1� e�sT F (T )
:

Thus, F is NBUL. The proof in NWUL case is similar.
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