A Subset of the Space of the χ^2 Sequences¹

N. Subramanian

Department of Mathematics, SASTRA University, Thanjavur-613 401, India e-mail: nsmaths@yahoo.com

Received Date: July 23, 2010 Accepted Date: January 5, 2011

Abstract. Let χ^2 denote the space of all Pringsheim sense double gai sequences. Let Λ^2 denote the space of all Pringsheim sense double analytic sequences. This paper is devoted to a study of the general properties of Sectional space χ^2 of χ^2 .

Key words: Double gai sequence, double analytic sequence, Sectional sequence spaces.

2000 Mathematics Subject Classification: 40A05, 40C05, 40D05.

1. Introduction

Throughout w, χ and Λ denote the classes of all, gai and analytic scalar valued single sequences, respectively.

We write w^2 for the set of all complex sequences (x_{mn}) , where $m, n \in \mathbb{N}$, the set of positive integers. Then, w^2 is a linear space under the coordinate wise addition and scalar multiplication.

Some initial works on double sequence spaces is found in Bromwich [3]. Later on, they were investigated by Hardy [5], Moricz [6], Moricz and Rhoades [7], Basarir and Solankan [2], Tripathy [8], Colak and Turkmenoglu [4], Turkmenoglu [9], and many others.

Let us define the following sets of double sequences:

¹Dedicated to my beloved Professor D. Jeyamani, Department of Mathematics, SBK College, Aruppukottai-626 101, India, a committed teacher, on his retirement from service but not from teaching

$$\mathcal{M}_{u}(t) := \left\{ (x_{mn}) \in w^{2} : sup_{m,n \in N} |x_{mn}|^{t_{mn}} < \infty \right\},$$

$$\mathcal{C}_{p}(t) := \left\{ (x_{mn}) \in w^{2} : p - lim_{m,n \to \infty} |x_{mn}|^{t_{mn}} = 1 \text{ for some } \in \mathbb{C} \right\},$$

$$\mathcal{C}_{0p}(t) := \left\{ (x_{mn}) \in w^{2} : p - lim_{m,n \to \infty} |x_{mn}|^{t_{mn}} = 1 \right\},$$

$$\mathcal{L}_{u}(t) := \left\{ (x_{mn}) \in w^{2} : \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} |x_{mn}|^{t_{mn}} < \infty \right\},$$

$$\mathcal{C}_{bp}(t) := \mathcal{C}_{p}(t) \cap \mathcal{M}_{u}(t) \text{ and } \mathcal{C}_{0bp}(t) = \mathcal{C}_{0p}(t) \cap \mathcal{M}_{u}(t);$$

where $t = (t_{mn})$ is the sequence of strictly positive reals t_{mn} for all $m, n \in \mathbb{N}$ and $p-\lim_{m,n\to\infty}$ denotes the limit in the Pringsheim's sense. In the case $t_{mn} = 1 \text{ for all } m, n \in \mathbb{N}; \mathcal{M}_u(t), \mathcal{C}_p(t), \mathcal{C}_{0p}(t), \mathcal{L}_u(t), \mathcal{C}_{bp}(t) \text{ and } \mathcal{C}_{0bp}(t) \text{ reduce}$ to the sets $\mathcal{M}_u, \mathcal{C}_p, \mathcal{C}_{0p}, \mathcal{L}_u, \mathcal{C}_{bp}$ and \mathcal{C}_{0bp} , respectively. Now, we may summarize the knowledge given in some document related to the double sequence spaces. Gökhan and Colak [11,12] have proved that $\mathcal{M}_{u}(t)$ and $\mathcal{C}_{p}(t)$, $\mathcal{C}_{bp}(t)$ are complete paranormed spaces of double sequences and gave the α -, β -, γ - duals of the spaces $\mathcal{M}_u(t)$ and $\mathcal{C}_{bp}(t)$. Quite recently, in her PhD thesis, Zelter [13] has essentially studied both the theory of topological double sequence spaces and the theory of summability of double sequences. Mursaleen and Edely [14] have recently introduced the statistical convergence and Cauchy for double sequences and given the relation between statistical convergent and strongly Cesàro summable double sequences. Nextly, Mursaleen [15] and Mursaleen and Edely [16] have defined the almost strong regularity of matrices for double sequences and applied these matrices to establish a core theorem and introduced the M-core for double sequences and determined those four dimensional matrices transforming every bounded double sequences $x = (x_{ik})$ into one whose core is a subset of the M-core of x. More recently, Altay and Basar [17] have defined the spaces $\mathcal{BS}, \mathcal{BS}(t), \mathcal{CS}_p, \mathcal{CS}_{bp}, \mathcal{CS}_r$ and \mathcal{BV} of double sequences consisting of all double series whose sequence of partial sums are in the spaces $\mathcal{M}_u, \mathcal{M}_u(t), \mathcal{C}_p, \mathcal{C}_{bp}, \mathcal{C}_r$ and \mathcal{L}_u , respectively, and also examined some properties of those sequence spaces and determined the α - duals of the spaces $\mathcal{BS}, \mathcal{BV}, \mathcal{CS}_{bp}$ and the $\beta(\vartheta)$ - duals of the spaces \mathcal{CS}_{bp} and \mathcal{CS}_r of double series. Quite recently Basar and Sever [18] have introduced the Banach space \mathcal{L}_q of double sequences corresponding to the well-known space ℓ_q of single sequences and examined some properties of the space \mathcal{L}_q . Quite recently Subramanian and Misra [19] have studied the space $\chi_M^2(p,q,u)$ of double sequences and gave some inclusion relations. We need the following inequality in the sequel of the paper. For $a, b, \geq 0$ and

0 , we have

$$(1) (a+b)^p \le a^p + b^p$$

The double series $\sum_{m,n=1}^{\infty} x_{mn}$ is called convergent if and only if the double sequence (s_{mn}) is convergent, where $s_{mn} = \sum_{i,j=1}^{m,n} x_{ij} (m,n \in \mathbb{N})$ (see[1]).

A sequence $x=(x_{mn})$ is said to be double analytic if $\sup_{mn}|x_{mn}|^{1/m+n}<\infty$. The vector space of all double analytic sequences will be denoted by Λ^2 . A sequence $x=(x_{mn})$ is called double entire sequence if $|x_{mn}|^{1/m+n}\to 0$ as $m,n\to \infty$ ∞ . The double entire sequences will be denoted by Γ^2 . A sequence $x=(x_{mn})$ is called double gai sequence if $((m+n)!|x_{mn}|)^{1/m+n} \to 0$ as $m, n \to \infty$. The double gai sequences will be denoted by χ^2 . Let $\phi = \{allfinite sequences\}$.

Consider a double sequence $x = (x_{ij})$. The $(m, n)^{th}$ section $x^{[m,n]}$ of the sequence is defined by $x^{[m,n]} = \sum_{i,j=0}^{m,n} x_{ij} \Im_{ij}$ for all $m, n \in \mathbb{N}$; where \Im_{ij} denotes the double sequence whose only non zero term is a 1 in the $(i,j)^{th}$ place for each $i,j \in \mathbb{N}$.

An FK-space(or a metric space) X is said to have AK property if (\Im_{mn}) is a Schauder basis for X. Or equivalently $x^{[m,n]} \to x$.

An FDK-space is a double sequence space endowed with a complete metrizable; locally convex topology under which the coordinate mappings $x = (x_k) \rightarrow (x_{mn})(m, n \in \mathbb{N})$ are also continuous.

If X is a sequence space, we give the following definitions:

(i) X' = the continuous dual of X;

(ii)
$$X^{\alpha} = \{ a = (a_{mn}) : \sum_{m,n=1}^{\infty} |a_{mn}x_{mn}| < \infty, \text{ for each } x \in X \};$$

(iii)
$$X^{\beta} = \{a = (a_{mn}) : \sum_{m,n=1}^{\infty} a_{mn} x_{mn} \text{ is convegent, for each } x \in X\};$$

(iv)
$$X^{\gamma} = \left\{ a = (a_{mn}) : \sup_{mn} \geq 1 \left| \sum_{m,n=1}^{M,N} a_{mn} x_{mn} \right| < \infty, \text{ for each } x \in X \right\};$$

(v) let X be an
$$FK$$
-space $\supset \phi$; then $X^f = \{f(\Im_{mn}) : f \in X'\}$;

(vi)
$$X^{\delta} = \left\{ a = (a_{mn}) : \sup_{mn} |a_{mn}x_{mn}|^{1/m+n} < \infty, \text{ for each } x \in X \right\};$$

 $X^{\alpha}.X^{\beta},X^{\gamma}$ are called $\alpha-$ (or Köthe-Toeplitz) dual of $X,\beta-$ (or generalized-Köthe-Toeplitz) dual of $X,\gamma-$ dual of X, $\delta-$ dual of X respectively. X^{α} is defined by Gupta and Kamptan [10]. It is clear that $x^{\alpha}\subset X^{\beta}$ and $X^{\alpha}\subset X^{\gamma}$, but $X^{\alpha}\subset X^{\gamma}$ does not hold, since the sequence of partial sums of a double convergent series need not to be bounded.

The notion of difference sequence spaces (for single sequences) was introduced by Kizmaz [20] as follows

$$Z(\Delta) = \{x = (x_k) \in w : (\Delta x_k) \in Z\}$$

for $Z = c, c_0$ and ℓ_{∞} , where $\Delta x_k = x_k - x_{k+1}$ for all $k \in \mathbb{N}$. Here w, c, c_0 and ℓ_{∞} denote the classes of all, convergent, null and bounded sclar valued single sequences respectively. The above spaces are Banach spaces normed by

$$||x|| = |x_1| + \sup_{k \ge 1} |\Delta x_k|$$

Later on the notion was further investigated by many others. We now introduce the following difference double sequence spaces defined by

$$Z\left(\Delta\right) = \left\{x = (x_{mn}) \in w^2 : (\Delta x_{mn}) \in Z\right\}$$

where $Z = \Lambda^2, \chi^2$ and $\Delta x_{mn} = (x_{mn} - x_{mn+1}) - (x_{m+1n} - x_{m+1n+1}) = x_{mn} - x_{mn+1} - x_{m+1n} + x_{m+1n+1}$ for all $m, n \in \mathbb{N}$

We recall that cs_0^2 denotes the vector space of all sequences $x = (x_{mn})$ such that $\{\xi_{mn}\}$ is a double null sequence.

2. Definitions and Preliminaries

A double sequence $x=(x_{mn})$ is called convergent (with limit L) if and only if for every $\epsilon>0$ there exists a positive integer $n_0=n_0$ (ϵ) such that $|x_{mn}-L|<\epsilon$, for all $m,n\geq n_0$. We write $x_{mn}\to L$ or $\lim_{m,n\to\infty}x_{mn}=L$ if (x_{mn}) is convergent to L. The limit L is called double limit or Pringsheim sense limit.

A sequence $x = (x_{mn})$ is said to be double analytic if $\sup_{mn} |x_{mn}|^{1/m+n} < \infty$. The vector space of all Pringsheim sense double analytic sequences will be denoted by Λ^2 . A sequence $x = (x_{mn})$ is called Pringsheim sense double entire sequence

 $|x_{mn}|^{1/m+n} \to 0$ as $m, n \to \infty$. The double entire sequences will be denoted by Γ^2 . The space Λ^2 and Γ^2 is a metric space with the metric

(2)
$$d(x,y) = \sup_{mn} \left\{ |x_{mn} - y_{mn}|^{1/m+n} : m, n : 1, 2, 3, \dots \right\}$$

for all $x = \{x_{mn}\}$ and $y = \{y_{mn}\}$ in Γ^2 .

A sequence $x=(x_{mn})$ is called Pringsheim sense double gai sequence if $((m+n)!|x_{mn}|)^{1/m+n} \to 0$ as $m,n \to \infty$. The double gai sequences will be denoted by χ^2 . The space χ^2 is a metric space with the metric

(3)
$$\widetilde{d}(x,y) = \sup_{mn} \left\{ ((m+n)! |x_{mn} - y_{mn}|)^{1/m+n} : m, n : 1, 2, 3, \dots \right\}$$

for all $x = \{x_{mn}\}$ and $y = \{y_{mn}\}$ in χ^2 .

Let
$$\chi_s^2 = \left\{ x = (x_{mn}) : \xi : (\xi_{mn}) \in \chi^2 \right\}$$
 where $\xi_{mn} = \alpha_{11} + \alpha_{22} + \dots + \alpha_{mn}$ for $m, n = 1, 2, 3, \dots$. Here $\alpha_{11} = x_{11} + x_{12} + \dots + x_{1n}$; $\alpha_{22} = x_{21} + x_{22} + \dots + x_{2n}$; \vdots
$$\alpha_{mn} = x_{m1} + x_{m2} + \dots + x_{mn}. \text{ and } \Lambda^2 = \left\{ y = (y_{mn}) : \eta : (\eta_{mn}) \in \Lambda^2 \right\}$$
 where $\eta_{mn} = \beta_{11} + \beta_{22} + \dots + \beta_{mn}$ for $m, n = 1, 2, 3, \dots$. Here $\beta_{11} = y_{11} + y_{12} + \dots + y_{1n}$; $\beta_{22} = y_{21} + y_{22} + \dots + y_{2n}$; \vdots

$$\beta_{mn} = y_{m1} + y_{m2} + \dots + y_{mn}.$$

The space Λ_s^2 is a metric space with the metric

(4)
$$d(x,y) = \sup_{mn} \left\{ \left| \xi_{mn} - \eta_{mn} \right|^{1/m+n} : m, n : 1, 2, 3, \dots \right\}$$

for all $\xi = \{\xi_{mn}\}$ and $\eta = \{\eta_{mn}\}$ in Λ^2 .

The space χ_s^2 is a metric space with the metric

(5)
$$\widetilde{d}(x,y) = \sup_{mn} \left\{ \left((m+n)! \left| \xi_{mn} - \eta_{mn} \right| \right)^{1/m+n} : m, n : 1, 2, 3, \dots \right\}$$

for all $\xi = \{\xi_{mn}\}$ and $\eta = \{\eta_{mn}\}$ in χ^2 .

Let $\sigma(\chi^2)$ denote the vector space of all sequences $x = \{x_{mn}\}$ such that $\left\{\frac{\xi_{mn}}{(m+n)}\right\}$ is an double gai sequence.

A sequence E is said to be solid (or normal) if $(\lambda_{mn}x_{mn}) \in E$, whenever $(x_{mn}) \in E$ for all sequences of scalars $(\lambda_{mn} = k)$ with $|\lambda_{mn}| \leq 1$.

$$x = (x_{mn}) \in \sigma\left(\chi^2\right) \Leftrightarrow \left\{\frac{\alpha_{11} + \alpha_{22} + \dots + \alpha_{mn}}{m+n}\right\} \in \chi^2.$$

$$\Leftrightarrow \left| \frac{(m+n)!|\alpha_{11} + \alpha_{22} + \dots + \alpha_{mn}|}{(m+n)} \right|^{1/m+n} \to 0 \, as \, m, n \to \infty$$

Remark.
$$x = (x_{mn}) \in \sigma\left(\chi^{2}\right) \Leftrightarrow \left\{\frac{\alpha_{11} + \alpha_{22} + \dots + \alpha_{mn}}{m + n}\right\} \in \chi^{2}.$$

$$\Leftrightarrow \left|\frac{(m+n)!|\alpha_{11} + \alpha_{22} + \dots + \alpha_{mn}|}{(m+n)}\right|^{1/m + n} \to 0 \text{ as } m, n \to \infty$$

$$\Leftrightarrow \left((m+n)!|\alpha_{11} + \alpha_{22} + \dots + \alpha_{mn}|\right)^{1/m + n} \to 0 \text{ as } m, n \to \infty, \text{ because }$$

$$(m+n)^{1/m + n} \to 1 \text{ as } m, n \to \infty.$$

$$\Leftrightarrow (x_{mn}) \in \chi_{s}^{2}$$

$$\Leftrightarrow \sigma\left(\chi^{2}\right) \in \chi^{2}$$

$$\Leftrightarrow (x_{mn}) \in \chi_s^2$$
$$\Leftrightarrow \sigma(\chi^2) \in \chi_s^2.$$

$$\Leftrightarrow \sigma\left(\chi^2\right) \in \chi_s^2$$

- In this paper we investigate: (i) set-inclusion between χ_s^2 and χ^2 , (ii) AK-property possessed by χ_s^2 , (iii) Solidity of χ_s^2 as a linear space,
- (iv) β dual of χ_s^2 .

3. Main Results

3.1. Proposition. $\chi_s^2 \subset \chi^2$.

Proof. Let
$$x \in \chi_s^2$$
 $\Rightarrow \xi \in \chi^2$

(6)
$$((m+n)! |\xi_{mn}|)^{1/m+n} \to 0 \, as \, m, n \to \infty$$

But
$$x_{mn} = \xi_{mn} - \xi_{mn+1} - \xi_{m+1n} + \xi_{m+1n+1}$$

Hence $((m+n)! |x_{mn}|)^{1/m+n} \le ((m+n)! |\xi_{mn}|)^{1/m+n} + ((m+n)! |\xi_{mn+1}|)^{1/m+n} +$

$$\begin{array}{l} \left((m+n)!\left|\xi_{m+1n}\right|\right)^{1/m+n} + \left((m+n)!\left|\xi_{m+1n+1}\right|\right)^{1/m+n} \to 0\,as\,m,n \to \infty\,\mathrm{by}\\ \mathrm{using}\,(6)\\ \Rightarrow x \in \chi^2.\\ \Rightarrow \chi_s^2 \subset \chi^2. \end{array}$$

Note The above inclusion is strict.

Take the sequence
$$\Im_{mn} = \begin{pmatrix} \frac{1}{(m+n)!}, & 0, & \dots 0 \\ 0, & 0, & \dots 0 \\ \vdots \\ 0, & 0, & \dots 0 \end{pmatrix} \in \chi^2$$
. We have
$$\alpha_{11} = \frac{1}{(m+n)!} + 0 + 0 + \dots + 0 = \frac{1}{(m+n)!}$$

$$\alpha_{22} = 0 + 0 + \dots + 0 = 0$$

$$\alpha_{33} = 0 + 0 + \dots + 0 = 0$$

$$\vdots$$

$$\alpha_{mn} = 0 + 0 + 0 + \dots + 0 = 0$$

$$\vdots$$

$$\alpha_{mn} = 0 + 0 + 0 + \dots + 0 = 0$$

$$\to mn^{th} - row \leftarrow$$
 and so on. Now $((m+n)! |\xi_{mn}|)^{1/m+n} = 1$ for all m, n . Hence $\left\{ ((m+n)! |\xi_{mn}|)^{1/m+n} \right\}$ does not tend to zero as $m, n \to \infty$. So $\Im_{mn} \notin \chi^2_s$. Thus the inclusion $\chi^2_s \subset \chi^2$ is strict. This completes the proof.

3.2. Proposition. χ_s^2 has AK property.

Proof. Let $x = (x_{mn}) \in \chi_s^2$ and take the $[mn]^{th}$ sectional sequence we have

$$x^{[rs]} = \begin{pmatrix} x_{11}, & x_{12}, & \dots x_{1n}, & 0 \\ \vdots & & & & \\ x_{m1}, & x_{m2}, & \dots x_{mn}, & 0 \\ 0, & 0, & \dots 0, & 0 \end{pmatrix}, \text{ for } m \geq r, n \geq s. \text{ Hence}$$

$$d\left(x, x^{[r,s]}\right) = \sup_{mn} \left\{ \left((m+n)! \left| \xi_{mn} - \xi_{mn}^{[rs]} \right| \right)^{1/m+n} : m \geq r, n \geq s \right\} \to 0 \text{ as}$$

$$[r,s] \to \infty. \text{ Therefore } x^{[rs]} \to x \in \chi_s^2 \text{ as } r, s \to \infty. \text{ Thus } \chi_s^2 \text{ has AK. This completes the proof.}$$

3.3. Proposition. χ_s^2 is a linear space over field $\mathbb C$ of complex numbers.

Proof. Let $x=(x_{mn})$ and $y=(y_{mn})$ belong to χ_s^2 . Let $\alpha,\beta\in\mathbb{C}$. Then $\xi=(\xi_{mn})\in\chi^2$ and $\eta=(\eta_{mn})\in\chi^2$. But χ^2 is a linear space. Hence $\alpha\xi+\beta\eta\in\chi^2$. Consequently $\alpha x+\beta y\in\chi_s^2$. Therefore χ_s^2 is linear. This completes the proof.

3.4. Proposition. χ_s^2 is solid.

Proof. Let $|x_{mn}| \leq |y_{mn}|$ with $y = (y_{mn}) \in \chi_s^2$. So $|\xi_{mn}| \leq |\eta_{mn}|$ with $\eta = (\eta_{mn}) \in \chi^2$. But χ^2 is solid. Hence $\xi = (\xi_{mn}) \in \chi^2$. Therefore $x = (x_{mn}) \in \chi_s^2$. Hence χ_s^2 is solid. This completes the proof.

3.5. Proposition. The β - dual space of χ_s^2 is Λ^2 .

Proof. Step 1. By Proposition 3.1, we have $\chi_s^2 \subset \chi^2$. Hence $(\chi^2)^{\beta} \subset (\chi_s^2)^{\beta}$. But $(\chi^2)^{\beta} = \Lambda^2$. Therefore

$$\Lambda^2 \subset \left(\chi_s^2\right)^\beta.$$

Step 2. Next we show that $(\chi_s^2)^{\beta} \subset \Lambda^2$. Let $y = (y_{mn}) \in (\chi_s^2)^{\beta}$. Consider $f(x) = \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} x_{mn} y_{mn}$ with $x = (x_{mn}) \in \chi_s^2$ $x = [(\Im_{mn} - \Im_{mn+1}) - (\Im_{m+1n} - \Im_{m+1n+1})]$

$$=\begin{pmatrix} 0, & 0, & \dots 0, & 0, & \dots & 0 \\ 0, & 0, & \dots 0, & 0, & \dots & 0 \\ \vdots & & & & & & \\ 0, & 0, & \dots \frac{1}{(m+n)!}, & \frac{-1}{(m+n)!}, & \dots & 0 \\ 0, & 0, & \dots 0, & 0, & \dots & 0 \\ 0, & 0, & \dots 0, & 0, & \dots & 0 \\ 0, & 0, & \dots 0, & 0, & \dots & 0 \\ \end{pmatrix} - \begin{pmatrix} 0, & 0, & \dots 0, & 0, & \dots & 0 \\ 0, & 0, & \dots 0, & 0, & \dots & 0 \\ \vdots & & & & & & \\ \vdots & & & & & & \\ 0, & 0, & \dots 0, & 0, & \dots & 0 \\ 0, & 0, & \dots \frac{1}{(m+n)!}, & \frac{-1}{(m+n)!}, & \dots & 0 \\ 0, & 0, & \dots 0, & 0, & \dots & 0 \\ \end{pmatrix}$$

$$\left\{ \left((m+n)! \, |x_{mn}| \right)^{1/m+n} \right\} = \begin{pmatrix} 0, & 0, & \dots 0, & 0, & \dots & 0 \\ 0, & 0, & \dots 0, & 0, & \dots & 0 \\ \vdots & & & & & & \\ 0, & 0, & \dots \frac{1}{(m+n)!}, & \frac{-1}{(m+n)!}, & \dots & 0 \\ 0, & 0, & \dots \frac{-1}{(m+n)!}, & \frac{1}{(m+n)!}, & \dots & 0 \\ 0, & 0, & \dots 0, & 0, & \dots & 0 \end{pmatrix}. \text{ Hence constant}$$

verges to zero.

Therefore $[(\Im_{mn} - \Im_{mn+1}) - (\Im_{m+1n} - \Im_{m+1n+1})] \in \chi^2_s$.

Hence $d((\Im_{mn} - \Im_{mn+1}) - (\Im_{m+1n} - \Im_{m+1n+1}), 0) = 1$. But

 $|y_{mn}| \leq ||f|| d((\mathfrak{I}_{mn} - \mathfrak{I}_{mn+1}) - (\mathfrak{I}_{m+1n} - \mathfrak{I}_{m+1n+1}), 0) \leq ||f|| \cdot 1 < \infty$ for each m, n. Thus (y_{mn}) is a double bounded sequence and hence an double analytic sequence. In other words $y \in \Lambda^2$. But $y = (y_{mn})$ is arbitrary in $(\chi_s^2)^{\beta}$. Therefore

(8)
$$\left(\chi_s^2\right)^\beta \subset \Lambda^2.$$

From (7) and (8) we get $\left(\chi_s^2\right)^\beta = \Lambda^2$. This completes the proof.

3.6. Proposition. $\Lambda^{2}\subset\left(\chi_{s}^{2}\right)^{\beta}\subset\Lambda^{2}\left(\Delta\right)$.

Proof. Step 1. By Proposition 3.1, we have $\chi_s^2 \subset \chi^2$. Hence $(\chi^2)^{\beta} \subset (\chi_s^2)^{\beta}$. But $(\chi^2)^{\beta} = \Lambda^2$. Therefore

(9)
$$\Lambda^2 \subset \left(\chi_s^2\right)^{\beta}.$$

Step 2. Next we show that $(\chi_s^2)^{\beta} \subset \Lambda^2$. Let $y = (y_{mn}) \in (\chi_s^2)^{\beta}$. Consider $f(x) = \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} x_{mn} y_{mn}$ with $x = (x_{mn}) \in \chi_s^2$ $x = [(\Im_{mn} - \Im_{mn+1}) - (\Im_{m+1n} - \Im_{m+1n+1})]$

$$=\begin{pmatrix} 0, & 0, & \dots 0, & 0, & \dots & 0 \\ 0, & 0, & \dots 0, & 0, & \dots & 0 \\ \vdots & & & & & & \\ 0, & 0, & \dots \frac{1}{(m+n)!}, & \frac{-1}{(m+n)!}, & \dots & 0 \\ 0, & 0, & \dots \frac{-1}{(m+n)!}, & \frac{1}{(m+n)!}, & \dots & 0 \\ 0, & 0, & \dots 0, & 0, & \dots & 0 \end{pmatrix} \text{ where, for each fixed } m, n = 1, 2, 3, \cdots$$

$$\mathfrak{F}_{mn} = \begin{pmatrix} 0, & 0, & \dots 0, & 0, & \dots & 0 \\ 0, & 0, & \dots 0, & 0, & \dots & 0 \\ \cdot & & & & & & \\ \cdot & & & & & & \\ 0, & 0, & \dots \frac{1}{(m+n)!}, & 0, & \dots & 0 \\ 0, & 0, & \dots 0, & 0, & \dots & 0 \end{pmatrix}, \frac{1}{(m+n)!} \text{ in the } (mn)^{th} \text{ place and zero's}$$

elsewhere.

Then

$$f\left[\left(\Im_{mn}-\Im_{mn+1}\right)-\left(\Im_{m+1n}-\Im_{m+1n+1}\right)\right]=\left[\left(y_{mn}-y_{mn+1}\right)-\left(y_{m+1n}-y_{m+1n+1}\right)\right].$$

Hence

$$|(y_{mn} - y_{mn+1}) - (y_{m+1n} - y_{m+1n+1})| = \begin{vmatrix} f(\Im_{mn} - \Im_{mn+1}) \\ -(\Im_{m+1n} - \Im_{m+1n+1}) \end{vmatrix}$$

$$|(y_{mn} - y_{mn+1}) - (y_{m+1n} - y_{m+1n+1})| \le ||f|| d \left(\frac{(\Im_{mn} - \Im_{mn+1})}{-(\Im_{m+1n} - \Im_{m+1n+1}), 0} \right) \le ||f|| \cdot 1.$$

So, $\{(y_{mn}-y_{mn+1})-(y_{m+1n}-y_{m+1n+1})\}$ is double bounded sequence. Consequently $\{(y_{mn}-y_{mn+1})-(y_{m+1n}-y_{m+1n+1})\}\in\Lambda^2$. That is $\{y_{mn}\}\in\Lambda^2(\Delta)$. But $y=(y_{mn})$ is Originally in $\left(\chi_s^2\right)^\beta$. Therefore

$$(10) \qquad (\chi_s^2)^\beta \subset \Lambda^2 (\Delta) \,.$$

From (9) and (10) we conclude that $\Lambda^2 \subset (\chi_s^2)^\beta \subset \Lambda^2(\Delta)$. This completes the proof.

3.7. Proposition. $(\Lambda^2)^{\beta} = \Lambda^2$.

Proof. Step 1. Let $(x_{mn}) \in \Lambda^2$ and let $(y_{mn}) \in \Lambda^2$. Then we get $|y_{mn}|^{1/m+n} \leq M$ for some constant M > 0. Also $(x_{mn}) \in \chi^2 \Rightarrow ((m+n)! |x_{mn}|)^{1/m+n} \leq \epsilon = \frac{1}{2M}$ $\Rightarrow |x_{mn}| \leq \frac{1}{2^{m+n}M^{m+n}(m+n)!}$. Hence $\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} |x_{mn}y_{mn}| \leq \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} |x_{mn}| |y_{mn}|$

Also
$$(x_{mn}) \in \chi^2 \Rightarrow ((m+n)! |x_{mn}|)^{1/m+n} \le \epsilon = \frac{1}{2M}$$

$$\Rightarrow |x_{mn}| \leq \frac{1}{2^{m+n}M^{m+n}(m+n)!}$$

$$<\sum_{m=1}^{\infty}\sum_{n=1}^{\infty}\frac{1}{2^{m+n}}\frac{1}{M^{m+n}}M^{m+n}\frac{1}{(m+n)!}$$

$$<\sum_{m=1}^{\infty}\sum_{n=1}^{\infty}\frac{1}{2^{m+n}}\frac{1}{(m+n)!}<\infty.$$

Therefore, we get that $(x_{mn}) \in (\Lambda^2)^{\beta}$ and so we have

$$\chi^2 \subset \left(\Lambda^2\right)^{\beta}.$$

Step 2. Let $(x_{mn}) \in (\Lambda^2)^{\beta}$. This says that

(12)
$$\Rightarrow \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} |x_{mn}y_{mn}| < \infty \text{ for each } (y_{mn}) \in \Lambda^2.$$

Assume that $(x_{mn}) \notin \chi^2$, then there exists a sequence of positive integers $(m_p + n_p)$ strictly increasing such that

$$\left|x_{m_p+n_p}\right| > \frac{1}{2^{m_p+n_p}} \frac{1}{(m+n)!}, (p=1,2,3,\cdots)$$

Take

$$y_{m_p,n_p} = 2^{m_p+n_p} (m+n)! (p=1,2,3,\cdots)$$

and

$$y_{mn} = 0$$
 otherwise

Then $(y_{mn}) \in \Lambda^2$. But

$$\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} |x_{mn}y_{mn}| = \sum \sum_{p=1}^{\infty} |x_{m_p n_p} y_{m_p n_p}| > 1 + 1 + 1 + \cdots$$

We know that the infinite series $1+1+1+\cdots$ diverges. Hence $\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} |x_{mn}y_{mn}|$ diverges. This contradicts (12). Hence $(x_{mn}) \in \chi^2$. Therefore

$$(13) \qquad (\Lambda^2)^{\beta} \subset \chi^2.$$

From (11) and (13) we get $(\Lambda^2)^{\beta} = \chi^2$. This completes the proof.

3.9. Proposition. In χ_s^2 weak convergence does not imply strong convergence.

Proof. Assume that weak convergence implies strong convergence in χ_s^2 . Then we would have $(\chi_s^2)^{\beta\beta} = \chi_s^2$. (See [Wilansky [21]]) But $(\chi_s^2)^{\beta\beta} = (\Lambda^2)^{\beta} = \Lambda^2$. Thus $(\chi_s^2)^{\beta\beta} \neq (\chi_s^2)$. Hence weak convergence does not imply strong convergence in (χ_s^2) . This completes the proof.

3.1. Definition. Let $\alpha > 0$ be not an integer. Write $s_{\mu\gamma}^{\alpha\beta} = \sum_{m=1}^{\mu} \sum_{n=1}^{\gamma} A_{\mu-m\gamma-n}^{(\alpha-1)(\beta-1)} x_{mn}$, where $A_{pq}^{(\alpha\beta)}$ denotes the binomial coefficient $\frac{(p+\alpha,q+\beta)(p+\alpha-1,q+\beta-1)\cdots(\alpha+1,\beta+1)}{(pq)!}$ Then $(x_{mn}) \in \sigma^{\alpha\beta}\left(\chi^2\right)$ mean that $\left\{\frac{S_{\mu\gamma}^{(\alpha\beta)}}{A_{\mu\gamma}^{(\alpha-1)(\beta-1)}}\right\} \in \chi^2$.

3.10. Proposition. Let $\alpha, \beta > 0$ be a number which is not an integer. Then

$$\chi^2 \cap \sigma^{\alpha\beta} \left(\chi^2 \right) = \theta$$
, where θ denotes the sequence
$$\begin{pmatrix} 0, & 0, & \dots 0 \\ 0, & 0, & \dots 0 \\ \vdots & & & \\ 0, & 0, & \dots 0 \end{pmatrix}$$
.

Proof. Since $(x_{mn}) \in \sigma^{\alpha\beta}(\chi^2)$ we have $\left\{\frac{S_{\mu\gamma}^{(\alpha\beta)}}{A_{\mu\gamma}^{(\alpha-1)(\beta-1)}}\right\} \in \chi^2$. This is equivalent to $\left(S_{\mu\gamma}^{(\alpha\beta)}\right) \in \chi^2$. This, in turn, is equivalent to the assertion that $f_{\alpha\beta}(z) = 0$

 $\sum_{\mu=1}^{\infty} \sum_{\gamma=1}^{\infty} S_{\mu\gamma}^{(\alpha\beta)} z^{(\mu-1,\gamma-1)}$ is an integral function. Now $f_{\alpha\beta}(z) = \frac{f(z)}{(1-z)^{\alpha\beta}}$. Since $\alpha\beta$ is not an integer, f(z) and $f_{\alpha\beta}(z)$ cannot both be integral functions, for if one is an integral function, the other has a branch at z=1. Hence the

assertion holds good. So, the sequence
$$\theta = \begin{pmatrix} 0, & 0, & \dots & 0 \\ 0, & 0, & \dots & 0 \\ \vdots & & & & \\ 0, & 0, & \dots & 0 \end{pmatrix}$$
 belongs to both

 χ^2 and $\sigma^{\alpha\beta}(\chi^2)$. But this is the only sequence common to both these spaces. Hence $\chi^2 \cap \sigma^{\alpha\beta}(\chi^2) = \theta$.

- **3.2. Definition.** Fix $m,n=0,1,2,\cdots$. Given a sequence (x_{mn}) , put $\xi_{m_pn_p}=\frac{\alpha_{1+m,1+n}+\alpha_{2+m,2+n}+\cdots+\alpha_{m+p,n+p}}{p(m+n)!}$ for $p=1,2,3,\cdots$. Let $\left(\xi_{m_pn_p}:p=1,2,3,\cdots\right)\in\chi^2$ uniformly in $m,n=0,1,2,\cdots$. Then we call (x_{mn}) an "almost double gai sequence." The set of all almost double gai sequences is denoted by Δ^2 .
- **3.11. Proposition.** $\chi^2 \cap \sigma^{\alpha\beta} (\chi^2) = \Delta^2$, where Δ^2 , is the set of all almost double gai sequences.

Proof. Put
$$m = 0, n = 0$$
. Then
$$\left(\xi_{0p,0p}\right) \in \chi^2 \Leftrightarrow \left(\frac{\alpha_{11} + \alpha_{22} + \dots + \alpha_{pp}}{p}\right) \in \chi^2$$

$$\Leftrightarrow \left|\alpha_{11} + \alpha_{22} + \dots + \alpha_{pp}\right|^{1/m+n} \to 0 \text{ as } m, n \text{ and } p \to \infty.$$

$$(14) \qquad \Leftrightarrow \alpha_{11} + \alpha_{22} + \dots = 0$$

$$\Leftrightarrow (x_{mn}) \in cs_0^2.$$
Therefore $\Delta \subset cs_0^2$
Put $m = 1, n = 1$. Then
$$\left(\xi_{1p,1p}\right) \in \chi^2 \Leftrightarrow \left(\frac{\alpha_{22} + \dots + \alpha_{pp}}{p}\right) \in \chi^2$$

$$\Leftrightarrow \left|\alpha_{22} + \dots + \alpha_{pp}\right|^{1/m+n} \to 0 \text{ as } m, n \text{ and } p \to \infty.$$

$$(15) \qquad \Leftrightarrow \alpha_{22} + \alpha_{33} + \dots = 0$$

Similarly we get

$$\Leftrightarrow \alpha_{33} + \alpha_{44} + \dots = 0$$

$$\Leftrightarrow \alpha_{44} + \alpha_{55} + \dots = 0$$

and so on.

From (14) and (15) it follows that

$$\alpha_{11} = (\alpha_{11} + \alpha_{22} + \cdots) - (\alpha_{22} + \alpha_{33} + \cdots) = 0.$$

Similarly we obtain $\alpha_{22} = 0, \alpha_{33} = 0, \cdots$ and so on.

Hence
$$\Delta^2 = \theta$$
, where θ denots the sequence
$$\begin{pmatrix} 0, & 0, & \dots 0 \\ 0, & 0, & \dots 0 \\ \vdots & & & \\ 0, & 0, & \dots 0 \end{pmatrix}.$$

Thus we have proved that $\chi^2 \cap \sigma^{\alpha\beta}(\chi^2) = \theta$ and $\Delta^2 = \theta$. Inotherwords, $\chi^2 \cap \sigma^{\alpha\beta}(\chi^2) = \Delta^2$. This completes the proof.

3.12. Proposition. $\chi_s^2 = \chi^2 \bigcap cs_0^2$

Proof. By Proposition 3.1 $\chi_s^2 \subset \chi^2$. Also, since every double χ sequence ξ_{mn} is a double null sequence, it follows that (ξ_{mn}) is a double null sequence. Inotherwords $(\xi_{mn}) \in cs_0^2$. Thus $\chi_s^2 \subset cs_0^2$. Consequently

$$\chi_s^2 \subset \chi^2 \bigcap cs_0^2.$$

On the other hand, if $(\alpha_{mn}) \in \chi^2 \cap cs_0^2$, then $f(z) = \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \alpha_{mn} z^{(m-1,n-1)}$ is an χ function. But $(\alpha_{mn}) \in cs_0^2$. So, $f(1) = \alpha_{11} + \alpha_{22} + \cdots = 0$. Hence $\frac{f(z)}{1-z} = \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} ((m+n)! \xi_{mn}) z^{(m-1,n-1)}$ is also an double gai funtion. Hence $(\xi_{mn}) \in \chi^2$. So $x = (x_{mn}) \in \chi_s^2$. But (x_{mn}) is arbitrary in $\chi^2 \cap cs_0^2$. Therefore

(19)
$$\chi^2 \bigcap cs_0^2 \subset \chi_s^2.$$

From (18) and (19) we get $\chi_s^2 = \chi^2 \cap cs_0^2$. This completes the proof.

References

- 1. T.Apostol, Mathematical Analysis, Addison-wesley, London, 1978.
- 2. M.Basarir and O.Solancan, On some double sequence spaces, J. Indian Acad. Math., 21(2) (1999), 193-200.
- 3. T.J.I'A.Bromwich, An introduction to the theory of infinite series Macmillan and Co.Ltd., New York, (1965).
- 4. R.Colak and A.Turkmenoglu, The double sequence spaces $\ell_{\infty}^2(p)$, $c_0^2(p)$ and $c^2(p)$, (to appear).
- $5.\,$ G.H.Hardy, On the convergence of certain multiple series, Proc. Camb. Phil. Soc., 19 (1917), $\,$ 86-95.
- 6. F.Moricz, Extentions of the spaces c and c_0 from single to double sequences, Acta. Math. Hungerica, 57(1-2), (1991), 129-136.
- 7. F.Moricz and B.E.Rhoades, Almost convergence of double sequences and strong regularity of summability matrices, Math. Proc. Camb. Phil. Soc., 104, (1988), 283-294.

- 8. B.C.Tripathy, On statistically convergent double sequences, Tamkang J. Math., 34(3), (2003), 231-237.
- 9. A.Turkmenoglu, Matrix transformation between some classes of double sequences, Jour. Inst. of math. and Comp. Sci. (Math. Seri.), 12(1), (1999), 23-31.
- $10.\ P.K.Kamthan and M.Gupta, Sequence spaces and series, Lecture notes, Pure and Applied Mathematics, 65 Marcel Dekker, In c., New York , 1981.$
- 11. A.Gökhan and R.Colak, The double sequence spaces $c_2^P\left(p\right)$ and $c_2^{PB}\left(p\right)$, Appl. Math. Comput., 157(2), (2004), 491-501.
- 12. A.Gökhan and R.Colak, Double sequence spaces ℓ_2^∞ , ibid., 160(1), (2005), 147-153.
- 13. M.Zeltser, Investigation of Double Sequence Spaces by Soft and Hard Analitical Methods, Dissertationes Mathematicae Universitatis Tartuensis 25, Tartu University Press, Univ. of Tartu, Faculty of Mathematics and Computer Science, Tartu, 2001.
- 14. M.Mursaleen and O.H.H. Edely, Statistical convergence of double sequences, J. Math. Anal. Appl., 288(1), (2003), 223-231.
- 15. M.Mursaleen, Almost strongly regular matrices and a core theorem for double sequences, J. Math. Anal. Appl., 293(2), (2004), 523-531.
- 16. M.Mursaleen and O.H.H. Edely, Almost convergence and a core theorem for double sequences, J. Math. Anal. Appl., 293(2), (2004), 532-540.
- 17. B.Altay and F.Basar, Some new spaces of double sequences, J. Math. Anal. Appl., 309(1), (2005), 70-90.
- 18. F.Basar and Y.Sever, The space L_p of double sequences, Math. J. Okayama Univ, 51, (2009), 149-157.
- 19. N.Subramanian and U.K.Misra, The semi normed space defined by a double gai sequence of modulus function, Fasciculi Math., 46, (2010).
- 20. H.Kizmaz, On certain sequence spaces, Cand. Math. Bull., 24(2), (1981), 169-176.
- 21. A.Wilansky, Summability through Functional Analysis, North-Holland Mathematics studies, North-Holland Publishing, Amsterdam, Vol. 85 (1984).