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1. Introduction

Throughout w,χ and Λ denote the classes of all, gai and analytic scalar valued
single sequences, respectively.
We write w2 for the set of all complex sequences (xmn), where m,n ∈ N, the
set of positive integers. Then, w2 is a linear space under the coordinate wise
addition and scalar multiplication.

Some initial works on double sequence spaces is found in Bromwich [3]. Later on,
they were investigated by Hardy [5], Moricz [6], Moricz and Rhoades [7], Basarir
and Solankan [2], Tripathy [8], Colak and Turkmenoglu [4], Turkmenoglu [9],
and many others.

Let us define the following sets of double sequences:

1Dedicated to my beloved Professor D. Jeyamani, Department of Mathematics, SBK Col-
lege, Aruppukottai-626 101, India, a committed teacher, on his retirement from service but
not from teaching
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Mu (t) :=
n
(xmn) ∈ w2 : supm,n∈N |xmn|tmn <∞

o
,

Cp (t) :=
n
(xmn) ∈ w2 : p− limm,n→∞ |xmn − |tmn = 1 for some ∈ C

o
,

C0p (t) :=
n
(xmn) ∈ w2 : p− limm,n→∞ |xmn|tmn = 1

o
,

Lu (t) :=
n
(xmn) ∈ w2 :

P∞
m=1

P∞
n=1 |xmn|tmn <∞

o
,

Cbp (t) := Cp (t)
T
Mu (t) and C0bp (t) = C0p (t)

T
Mu (t);

where t = (tmn) is the sequence of strictly positive reals tmn for all m,n ∈ N
and p − limm,n→∞ denotes the limit in the Pringsheim’s sense. In the case
tmn = 1 for allm,n ∈ N;Mu (t) , Cp (t) , C0p (t) ,Lu (t) , Cbp (t) and C0bp (t) reduce
to the setsMu, Cp, C0p,Lu, Cbp and C0bp, respectively. Now, we may summarize
the knowledge given in some document related to the double sequence spaces.
Gökhan and Colak [11,12] have proved thatMu (t) and Cp (t) , Cbp (t) are com-
plete paranormed spaces of double sequences and gave the α−, β−, γ− duals of
the spacesMu (t) and Cbp (t) . Quite recently, in her PhD thesis, Zelter [13] has
essentially studied both the theory of topological double sequence spaces and
the theory of summability of double sequences. Mursaleen and Edely [14] have
recently introduced the statistical convergence and Cauchy for double sequences
and given the relation between statistical convergent and strongly Cesàro sum-
mable double sequences. Nextly, Mursaleen [15] and Mursaleen and Edely [16]
have defined the almost strong regularity of matrices for double sequences and
applied these matrices to establish a core theorem and introduced the M−core
for double sequences and determined those four dimensional matrices transform-
ing every bounded double sequences x = (xjk) into one whose core is a subset of
the M−core of x. More recently, Altay and Basar [17] have defined the spaces
BS,BS (t) , CSp, CSbp, CSr and BV of double sequences consisting of all double
series whose sequence of partial sums are in the spacesMu,Mu (t) , Cp, Cbp, Cr
and Lu, respectively, and also examined some properties of those sequence spaces
and determined the α− duals of the spaces BS,BV, CSbp and the β (ϑ)− duals
of the spaces CSbp and CSr of double series. Quite recently Basar and Sever
[18] have introduced the Banach space Lq of double sequences corresponding
to the well-known space cq of single sequences and examined some properties
of the space Lq. Quite recently Subramanian and Misra [19] have studied the
space χ2M (p, q, u) of double sequences and gave some inclusion relations.
We need the following inequality in the sequel of the paper. For a, b,≥ 0 and
0 < p < 1, we have

(1) (a+ b)p ≤ ap + bp

The double series
P∞

m,n=1 xmn is called convergent if and only if the double
sequence (smn) is convergent, where smn =

Pm,n
i,j=1 xij(m,n ∈ N) (see[1]).

A sequence x = (xmn)is said to be double analytic if supmn |xmn|1/m+n < ∞.
The vector space of all double analytic sequences will be denoted by Λ2.A se-
quence x = (xmn) is called double entire sequence if |xmn|1/m+n → 0 as m,n→
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∞. The double entire sequences will be denoted by Γ2. A sequence x = (xmn)

is called double gai sequence if ((m+ n)! |xmn|)1/m+n → 0 as m,n → ∞. The
double gai sequences will be denoted by χ2. Let φ = {allfinite sequences} .

Consider a double sequence x = (xij). The (m,n)th section x[m,n] of the se-
quence is defined by x[m,n] =

Pm,n
i,j=0xij=ij for all m,n ∈ N ; where =ij denotes

the double sequence whose only non zero term is a 1 in the (i, j)th place for each
i, j ∈ N.

An FK-space(or a metric space)X is said to have AK property if (=mn) is a
Schauder basis for X. Or equivalently x[m,n] → x.

An FDK-space is a double sequence space endowed with a complete metriz-
able; locally convex topology under which the coordinate mappings x = (xk)→
(xmn)(m,n ∈ N) are also continuous.

If X is a sequence space, we give the following definitions:

(i) X
0
= the continuous dual of X;

(ii) Xα =
©
a = (amn) :

P∞
m,n=1 |amnxmn| <∞, for eachx ∈ X

ª
;

(iii) Xβ =
©
a = (amn) :

P∞
m,n=1amnxmn is convegent, for eachx ∈ X

ª
;

(iv) Xγ =
n
a = (amn) : supmn ≥ 1

¯̄̄PM,N
m,n=1 amnxmn

¯̄̄
<∞, for each x ∈ X

o
;

(v) letX be an FK−space⊃ φ; thenXf =
n
f(=mn) : f ∈ X

0
o
;

(vi) Xδ =
n
a = (amn) : supmn |amnxmn|1/m+n <∞, for eachx ∈ X

o
;

Xα.Xβ ,Xγ are called α− (or Köthe-Toeplitz) dual ofX,β−(or generalized-Köthe-
Toeplitz)dual ofX, γ−dual ofX, δ−dual ofX respectively.Xα is defined by Gupta
and Kamptan [10]. It is clear that xα ⊂ Xβ and Xα ⊂ Xγ , but Xα ⊂ Xγ does
not hold, since the sequence of partial sums of a double convergent series need
not to be bounded.
The notion of difference sequence spaces (for single sequences) was introduced
by Kizmaz [20] as follows

Z (∆) = {x = (xk) ∈ w : (∆xk) ∈ Z}

for Z = c, c0 and c∞, where ∆xk = xk − xk+1 for all k ∈ N. Here w, c, c0 and
c∞ denote the classes of all, convergent,null and bounded sclar valued single
sequences respectively. The above spaces are Banach spaces normed by

kxk = |x1|+ supk≥1 |∆xk|
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Later on the notion was further investigated by many others. We now introduce
the following difference double sequence spaces defined by

Z (∆) =
©
x = (xmn) ∈ w2 : (∆xmn) ∈ Z

ª
where Z = Λ2, χ2 and ∆xmn = (xmn − xmn+1)− (xm+1n − xm+1n+1) = xmn −
xmn+1 − xm+1n + xm+1n+1 for all m,n ∈ N
We recall that cs20 denotes the vector space of all sequences x = (xmn) such that
{ξmn} is a double null sequence.

2. Definitions and Preliminaries

A double sequence x = (xmn) is called convergent (with limit L) if and only if for
every � > 0 there exists a positive integer n0 = n0 (�) such that |xmn − L| < �,
for all m,n ≥ n0. We write xmn → L or limm,n→∞xmn = L if (xmn) is conver-
gent to L. The limit L is called double limit or Pringsheim sense limit.
A sequence x = (xmn) is said to be double analytic ifsupmn |xmn|1/m+n < ∞.
The vector space of all Pringsheim sense double analytic sequences will be de-
noted by Λ2. A sequence x = (xmn) is called Pringsheim sense double entire se-
quence if
|xmn|1/m+n → 0asm,n → ∞. The double entire sequences will be denoted
by Γ2. The space Λ2 andΓ2 is a metric space with the metric

(2) d(x, y) = supmn

n
|xmn − ymn|1/m+n : m,n : 1, 2, 3, · · ·

o
for all x = {xmn}andy = {ymn}inΓ2.
A sequence x = (xmn) is called Pringsheim sense double gai sequence if
((m+ n)! |xmn|)1/m+n → 0asm,n → ∞. The double gai sequences will be
denoted by χ2. The space χ2is a metric space with the metric

(3) ed(x, y) = supmn

n
((m+ n)! |xmn − ymn|)1/m+n : m,n : 1, 2, 3, · · ·

o
forall x = {xmn}andy = {ymn}inχ2.

Let χ2s =
©
x = (xmn) : ξ : (ξmn) ∈ χ2

ª
where ξmn = α11 + α22 + · · ·+ αmn for m,n = 1, 2, 3, · · · .Here
α11 = x11 + x12 + · · ·+ x1n;
α22 = x21 + x22 + · · ·+ x2n;
...
αmn = xm1 + xm2 + · · ·+ xmn. and
Λ2 =

©
y = (ymn) : η : (ηmn) ∈ Λ2

ª
where ηmn = β11 + β22 + · · ·+ βmn for m,n = 1, 2, 3, · · · . Here
β11 = y11 + y12 + · · ·+ y1n;
β22 = y21 + y22 + · · ·+ y2n;
...
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βmn = ym1 + ym2 + · · ·+ ymn.

The space Λ2s is a metric space with the metric

(4) d(x, y) = supmn

n
|ξmn − ηmn|

1/m+n
: m,n : 1, 2, 3, · · ·

o
for all ξ = {ξmn}andη = {ηmn}inΛ2.

The space χ2s is a metric space with the metric

(5) ed(x, y) = supmn

n
((m+ n)! |ξmn − ηmn|)

1/m+n : m,n : 1, 2, 3, · · ·
o

forall ξ = {ξmn}andη = {ηmn}inχ2.

Let σ
¡
χ2
¢
denote the vector space of all sequences x = {xmn} such thatn

ξmn

(m+n)

o
is an double gai sequence.

A sequence E is said to be solid (or normal) if (λmnxmn) ∈ E, whenever
(xmn) ∈ E for all sequences of scalars (λmn = k) with |λmn| ≤ 1.

Remark.
x = (xmn) ∈ σ

¡
χ2
¢
⇔
n
α11+α22+···+αmn

m+n

o
∈ χ2.

⇔
¯̄̄
(m+n)!|α11+α22+···+αmn|

(m+n)

¯̄̄1/m+n
→ 0asm,n→∞

⇔ ((m+ n)! |α11 + α22 + · · ·+ αmn|)1/m+n → 0asm, n→∞,because
(m+ n)

1/m+n → 1asm,n→∞.
⇔ (xmn) ∈ χ2s
⇔ σ

¡
χ2
¢
∈ χ2s.

In this paper we investigate:
(i) set-inclusion between χ2s and χ2,
(ii) AK-property possessed by χ2s,
(iii)Solidity of χ2s as a linear space,
(iv) β− dual of χ2s.

3. Main Results

3.1. Proposition. χ2s ⊂ χ2.

Proof. Let x ∈ χ2s
⇒ ξ ∈ χ2

(6) ((m+ n)! |ξmn|)
1/m+n → 0asm,n→∞

But xmn = ξmn − ξmn+1 − ξm+1n + ξm+1n+1

Hence ((m+ n)! |xmn|)1/m+n ≤ ((m+ n)! |ξmn|)
1/m+n+

¡
(m+ n)!

¯̄
ξmn+1

¯̄¢1/m+n
+
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¡
(m+ n)!

¯̄
ξm+1n

¯̄¢1/m+n
+
¡
(m+ n)!

¯̄
ξm+1n+1

¯̄¢1/m+n → 0asm, n → ∞by
using (6)
⇒ x ∈ χ2.
⇒ χ2s ⊂ χ2.
Note The above inclusion is strict.

Take the sequence =mn =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
(m+n)! , 0, ...0

0, 0, ...0
.
.
.
0, 0, ...0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
∈ χ2.Wehave

α11 =
1

(m+n)! + 0 + 0 + · · ·+ 0 =
1

(m+n)!
α22 = 0 + 0 + · · ·+ 0 = 0
α33 = 0 + 0 + · · ·+ 0 = 0
...
αmn = 0 + 0 + 0 + · · ·+ 0 = 0
→ mnth − row ←
and so on.
Now ((m+ n)! |ξmn|)

1/m+n = 1 for all m,n. Hence
n
((m+ n)! |ξmn|)

1/m+n
o

does not tend to zero as m,n→∞. So =mn /∈ χ2s. Thus the inclusion χ2s ⊂ χ2

is strict. This completes the proof.

3.2. Proposition. χ2s has AK property.

Proof. Let x = (xmn) ∈ χ2s and take the [mn]
th sectional sequence we have

x[rs] =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

x11, x12, ...x1n, 0
.
.
.

xm1, xm2, ...xmn, 0
0, 0, ...0, 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
, form ≥ r, n ≥ s.Hence

d
¡
x, x[r,s]

¢
= supmn

½³
(m+ n)!

¯̄̄
ξmn − ξ[rs]mn

¯̄̄´1/m+n
: m ≥ r, n ≥ s

¾
→ 0as

[r, s] → ∞. Therefore x[rs] → x ∈ χ2s as r, s → ∞. Thus χ2s has AK. This
completes the proof.

3.3. Proposition. χ2s is a linear space over field C of compleex numbers.

Proof. Let x = (xmn) and y = (ymn) belong to χ2s. Let α, β ∈ C. Then ξ =
(ξmn) ∈ χ2 and η = (ηmn) ∈ χ2. But χ2 is a linear space. Hence αξ + βη ∈ χ2.
Consequently αx+ βy ∈ χ2s. Therefore χ

2
s is linear. This completes the proof.
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3.4. Proposition. χ2s is solid.

Proof. Let |xmn| ≤ |ymn| with y = (ymn) ∈ χ2s. So |ξmn| ≤ |ηmn| with η =
(ηmn) ∈ χ2. But χ2 is solid. Hence ξ = (ξmn) ∈ χ2. Therefore x = (xmn) ∈ χ2s.
Hence χ2s is solid. This completes the proof.

3.5. Proposition. The β− dual space of χ2s is Λ2.

Proof. Step 1. By Proposition 3.1, we have χ2s ⊂ χ2. Hence
¡
χ2
¢β ⊂ ¡χ2s¢β .

But
¡
χ2
¢β
= Λ2. Therefore

(7) Λ2 ⊂
¡
χ2s
¢β

.

Step 2. Next we show that
¡
χ2s
¢β ⊂ Λ2. Let y = (ymn) ∈

¡
χ2s
¢β

. Consider
f (x) =

P∞
m=1

P∞
n=1 xmnymn with x = (xmn) ∈ χ2s

x = [(=mn − =mn+1)− (=m+1n −=m+1n+1)]

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0, 0, ...0, 0, ... 0
0, 0, ...0, 0, ... 0
.
.
.
0, 0, ... 1

(m+n)! ,
−1

(m+n)! , ... 0

0, 0, ...0, 0, ... 0
0, 0, ...0, 0, ... 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
−

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0, 0, ...0, 0, ... 0
0, 0, ...0, 0, ... 0
.
.
.
0, 0, ...0, 0, ... 0
0, 0, ... 1

(m+n)! ,
−1

(m+n)! , ... 0

0, 0, ...0, 0, ... 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

n
((m+ n)! |xmn|)1/m+n

o
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0, 0, ...0, 0, ... 0
0, 0, ...0, 0, ... 0
.
.
.
0, 0, ... 1

(m+n)! ,
−1

(m+n)! , ... 0

0, 0, ... −1
(m+n)! ,

1
(m+n)! , ... 0

0, 0, ...0, 0, ... 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.Hence con-

verges to zero.

Therefore [(=mn −=mn+1)− (=m+1n −=m+1n+1)] ∈ χ2s.

Hence d ((=mn −=mn+1)− (=m+1n −=m+1n+1) , 0) = 1. But
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|ymn| ≤ kfk d ((=mn −=mn+1)− (=m+1n −=m+1n+1) , 0) ≤ kfk · 1 < ∞ for
each m,n. Thus (ymn) is a double bounded sequence and hence an double an-
alytic sequence. In other words y ∈ Λ2. But y = (ymn) is arbitrary in

¡
χ2s
¢β

.
Therefore

(8)
¡
χ2s
¢β ⊂ Λ2.

From (7) and (8) we get
¡
χ2s
¢β
= Λ2. This completes the proof.

3.6. Proposition. Λ2 ⊂
¡
χ2s
¢β ⊂ Λ2 (∆) .

Proof. Step 1. By Proposition 3.1, we have χ2s ⊂ χ2. Hence
¡
χ2
¢β ⊂ ¡χ2s¢β .

But
¡
χ2
¢β
= Λ2. Therefore

(9) Λ2 ⊂
¡
χ2s
¢β

.

Step 2. Next we show that
¡
χ2s
¢β ⊂ Λ2. Let y = (ymn) ∈

¡
χ2s
¢β

. Consider
f (x) =

P∞
m=1

P∞
n=1 xmnymn with x = (xmn) ∈ χ2s

x = [(=mn − =mn+1)− (=m+1n −=m+1n+1)]

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0, 0, ...0, 0, ... 0
0, 0, ...0, 0, ... 0
.
.
.
0, 0, ... 1

(m+n)! ,
−1

(m+n)! , ... 0

0, 0, ... −1
(m+n)! ,

1
(m+n)! , ... 0

0, 0, ...0, 0, ... 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
where, for eachfixedm,n = 1, 2, 3, · · ·

=mn =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0, 0, ...0, 0, ... 0
0, 0, ...0, 0, ... 0
.
.
.
0, 0, ... 1

(m+n)! , 0, ... 0

0, 0, ...0, 0, ... 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, 1
(m+n)! in the (mn)

th place andzero’s

elsewhere.
Then
f [(=mn−=mn+1)− (=m+1n−=m+1n+1)]=

£¡
ymn−ymn+1

¢
−
¡
ym+1n−ym+1n+1

¢¤
.
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Hence

|(ymn − ymn+1)− (ym+1n − ym+1n+1)| =
¯̄̄̄
f (=mn −=mn+1)
− (=m+1n −=m+1n+1)

¯̄̄̄

|(ymn − ymn+1)− (ym+1n − ym+1n+1)| ≤ kfk d
µ
(=mn −=mn+1)
− (=m+1n −=m+1n+1) , 0

¶
≤ kfk · 1.

So, {(ymn − ymn+1)− (ym+1n − ym+1n+1)} is double bounded sequence. Conse-
quently {(ymn − ymn+1)− (ym+1n − ym+1n+1)} ∈ Λ2. That is {ymn} ∈ Λ2 (∆) .
But y = (ymn) is Originally in

¡
χ2s
¢β

. Therefore

(10)
¡
χ2s
¢β ⊂ Λ2 (∆) .

From (9) and (10) we conclude that Λ2 ⊂
¡
χ2s
¢β ⊂ Λ2 (∆) . This completes the

proof.

3.7. Proposition.
¡
Λ2
¢β
= Λ2.

Proof. Step 1. Let (xmn) ∈ Λ2 and let (ymn) ∈ Λ2. Then we get |ymn|1/m+n ≤
M for some constant M > 0.
Also (xmn) ∈ χ2 ⇒ ((m+ n)! |xmn|)1/m+n ≤ � = 1

2M
⇒ |xmn| ≤ 1

2m+nMm+n(m+n)! .

Hence
P∞

m=1

P∞
n=1 |xmnymn| ≤

P∞
m=1

P∞
n=1 |xmn| |ymn|

<
P∞

m=1

P∞
n=1

1
2m+n

1
Mm+nM

m+n 1
(m+n)!

<
P∞

m=1

P∞
n=1

1
2m+n

1
(m+n)! <∞.

Therefore, we get that (xmn) ∈
¡
Λ2
¢β
and so we have

(11) χ2 ⊂
¡
Λ2
¢β

.

Step 2. Let (xmn) ∈
¡
Λ2
¢β

. This says that

(12) ⇒
∞X

m=1

∞X
n=1

|xmnymn| <∞ for each (ymn) ∈ Λ2.

Assume that (xmn) /∈ χ2, then there exists a sequence of positive integers
(mp + np) strictly increasing such that¯̄

xmp+np

¯̄
> 1

2mp+np

1
(m+n)! , (p = 1, 2, 3, · · · )
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Take

ymp,np = 2
mp+np (m+ n)! (p = 1, 2, 3, · · · )

and

ymn = 0 otherwise

Then (ymn) ∈ Λ2. ButP∞
m=1

P∞
n=1 |xmnymn| =

PP∞
p=1

¯̄
xmpnpympnp

¯̄
> 1 + 1 + 1 + · · · .

We know that the infinite series 1+1+1+· · · diverges. Hence
P∞

m=1

P∞
n=1 |xmnymn|

diverges. This contradicts (12). Hence (xmn) ∈ χ2. Therefore

(13)
¡
Λ2
¢β ⊂ χ2.

From (11) and (13) we get
¡
Λ2
¢β
= χ2. This completes the proof.

3.9. Proposition. In χ2s weak convergence does not imply strong convergence.

Proof. Assume that weak convergence implies strong convergence in χ2s. Then
we would have

¡
χ2s
¢ββ

= χ2s. (See [Wilansky [21]]) But
¡
χ2s
¢ββ

=
¡
Λ2
¢β
= Λ2.

Thus
¡
χ2s
¢ββ 6= ¡

χ2s
¢
. Hence weak convergence does not imply strong conver-

gence in
¡
χ2s
¢
. This completes the proof.

3.1. Definition. Let α > 0 be not an integer. Write
sαβμγ =

Pμ
m=1

Pγ
n=1A

(α−1)(β−1)
μ−mγ−n xmn, where A

(αβ)
pq denotes the binomial coef-

ficient (p+α,q+β)(p+α−1,q+β−1)···(α+1,β+1)
(pq)! Then (xmn) ∈ σαβ

¡
χ2
¢
mean that½

S(αβ)μγ

A
(α−1)(β−1)
μγ

¾
∈ χ2.

3.10. Proposition. Let α, β > 0 be a number which is not an integer. Then

χ2
T
σαβ

¡
χ2
¢
= θ, where θ denotes the sequence

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0, 0, ...0
0, 0, ...0
.
.
.
0, 0, ...0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Proof. Since (xmn) ∈ σαβ
¡
χ2
¢
we have

½
S(αβ)μγ

A
(α−1)(β−1)
μγ

¾
∈ χ2. This is equivalent

to
³
S
(αβ)
μγ

´
∈ χ2. This, in turn, is equivalent to the assertion that fαβ (z) =
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P∞
μ=1

P∞
γ=1 S

(αβ)
μγ z(μ−1,γ−1) is an integral function. Now fαβ (z) =

f(z)

(1−z)αβ .

Since αβ is not an integer, f (z) and fαβ (z) cannot both be integral functions,
for if one is an integral function, the other has a branch at z = 1. Hence the

assertion holds good. So, the sequence θ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0, 0, ...0
0, 0, ...0
.
.
.
0, 0, ...0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
belongs to both

χ2 and σαβ
¡
χ2
¢
. But this is the only sequence common to both these spaces.

Hence χ2
T
σαβ

¡
χ2
¢
= θ.

3.2. Definition. Fix m,n = 0, 1, 2, · · · . Given a sequence (xmn) , put ξmpnp =
α1+m,1+n+α2+m,2+n+···+αm+p,n+p

p(m+n)! for p = 1, 2, 3, · · · . Let
³
ξmpnp : p = 1, 2, 3, · · ·

´
∈

χ2 uniformly in m,n = 0, 1, 2, · · · . Then we call (xmn) an "almost double gai
sequence." The set of all almost double gai sequences is denoted by ∆2.

3.11. Proposition. χ2
T
σαβ

¡
χ2
¢
= ∆2, where ∆2, is the set of all almost

double gai sequences.

Proof. Put m = 0, n = 0. Then¡
ξ0p,0p

¢
∈ χ2 ⇔

³
α11+α22+···+αpp

p

´
∈ χ2

⇔ |α11 + α22 + · · ·+ αpp|1/m+n → 0asm, nandp→∞.

(14) ⇔ α11 + α22 + · · · = 0

⇔ (xmn) ∈ cs20.
Therefore ∆ ⊂ cs20
Put m = 1, n = 1. Then¡
ξ1p,1p

¢
∈ χ2 ⇔

³
α22+···+αpp

p

´
∈ χ2

⇔ |α22 + · · ·+ αpp|1/m+n → 0asm,nandp→∞.

(15) ⇔ α22 + α33 + · · · = 0

Similarly we get

(16) ⇔ α33 + α44 + · · · = 0

(17) ⇔ α44 + α55 + · · · = 0

and so on.
From (14) and (15) it follows that
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α11 = (α11 + α22 + · · · )− (α22 + α33 + · · · ) = 0.
Similarly we obtain α22 = 0, α33 = 0, · · · and so on.

Hence ∆2 = θ, where θ denots the sequence

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0, 0, ...0
0, 0, ...0
.
.
.
0, 0, ...0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Thus we have proved that χ2
T
σαβ

¡
χ2
¢
= θ and ∆2 = θ. Inotherwords,

χ2
T
σαβ

¡
χ2
¢
= ∆2. This completes the proof.

3.12. Proposition. χ2s = χ2
T
cs20.

Proof. By Proposition 3.1 χ2s ⊂ χ2. Also, since every double χ sequence
ξmn is a double null sequence, it follows that (ξmn) is a double null sequence.
Inotherwords (ξmn) ∈ cs20. Thus χ

2
s ⊂ cs20. Consequently

(18) χ2s ⊂ χ2
\

cs20.

On the other hand, if (αmn) ∈ χ2
T
cs20, then f (z) =

P∞
m=1

P∞
n=1 αmnz

(m−1,n−1)

is an χ function. But (αmn) ∈ cs20. So, f (1) = α11 + α22 + · · · = 0. Hence
f(z)
1−z =

P∞
m=1

P∞
n=1 ((m+ n)!ξmn) z

(m−1,n−1) is also an double gai funtion.
Hence (ξmn) ∈ χ2. So x = (xmn) ∈ χ2s. But (xmn) is arbitrary in χ2

T
cs20.

Therefore

(19) χ2
\

cs20 ⊂ χ2s.

From (18) and (19) we get χ2s = χ2
T
cs20. This completes the proof.
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