On The System of Rational Difference Equations \(x_{n}=f(x_{n-a₁},y_{n-b₁}),y_{n}=g(y_{n-b₂},z_{n-c₁}),z_{n}=h(z_{n-c₂},x_{n-a₂}) \)

Nihat Akgunes, Abdullah Selcuk Kurbanlı

Abstract


In this paper we study the global behavior of positive solutions of the more general system of rational difference \(x_{n}=f(x_{n-a₁},y_{n-b₁}),  y_{n}=g(y_{n-b₂},z_{n-c₁}),  z_{n}=h(z_{n-c₂},x_{n-a₂}) \), where \(n∈ℕ, a₁,b₁,c₁,a₂,b₂,c₂∈{0,1,2,...}\) and the initial values \(x_{-a},x_{-a+1},...,x₀, y_{-b},y_{-b+1},...,y_{0,} z_{-c},z_{-c+1},...,z₀∈ℝ⁺\). We give sufficient conditions under which every positive solution of this system converges to the unique positive equilibrium

Keywords


Behavior, Global behavior, Difference equations system

References


: Akgüneş. N. (2010): A study on stability of some difference equation systems, Master Thesis, Selcuk University, Institute of Natural and Applied Sciences. (In Turkish)

: Berenhaut, K., Foley, J., Stević, S. (2007): The global attractivity of the rational difference equation y_{n}=1+y_{n-k}/y_{n-m}, Proc. Amer. Math. Soc., vol.135, no.4, pp. 1133-1140.

: Cinar, C. (2004):On the positive solutions of the difference equation system x_{n+1}=1/y_{n},y_{n+1}=y_{n}/x_{n-1}y_{n-1}, Applied Mathematics and Computation 158 , no. 2, 303--305.

: Clark D., Kulenović, M. R. S. (2002):A coupled system of rational difference equations, Computers &Mathematics with Applications 43 , no. 6-7, 849--867.

: Clark D.,Kulenović, M. R. S. , Selgrade, J. F. (2003):Global asymptotic behavior of a two-dimensional difference equation modelling competition, Nonlinear Analysis 52 , no. 7, 1765--1776.

: Fan, Y., Wang, L., Li, W. (2004): Global behavior of a higher order nonlinear difference equation, J. Math. Anal.Appl. 299, 113--126.

: Grove, E. A., Ladas, G., McGrath, L. C., Teixeira,C. T. (2001): Existence and behavior of solutions of a rational system, Communications on Applied Nonlinear Analysis 8, no. 1, 1--25.

: Kulenović, M. R. S., Nurkanović, M. (2005): Asymptotic behavior of a system of linear fractional difference equations, Journal of Inequalities and Applications 2005, no. 2, 127--143.

: Kurbanli, A. S. (2011): On the behavior of solutions of the system of rational difference equations x_{n+1}=x_{n-1}/(y_{n}x_{n-1}-1), y_{n+1}=y_{n-1}/(x_{n}y_{n-1}-1), z_{n+1}=z_{n-1}/(y_{n}z_{n-1}-1) Discrete Dynamics in Nature and Society, vol. 2011, Article ID 932362, 12 pages.

: Ozban,A. (2007): On the system of rational difference equations x_{n}=a/y_{n-3};y_{n}=by_{n-3}/(x_{n-q}y_{n-q}), Appl. Math. Comput., vol. 188, pp. 833-837.

: Sun, F.,Yang X., Zhang, C. (2009):On the Recursive Sequence x_{n}=A+x_{n-k}^{p}/x_{n-1}^{r}, Discrete Dyn. Nat.Soc., vol. 2009, Article ID 608976, 8 pages.

: Sun, T., Xi, H.(2005): Global behavior of the nonlinear difference equation x_{n+1}=f(x_{n-s},x_{n-t}), J. Math. Anal. Appl., 311, pp. 760-765.

: Sun, T., Xi, H., Hong, L. (2006): On the system of rational difference equations x_{n+1}=f(x_{n},y_{n-k}), y_{n+1}=f(y_{n},x_{n-k}), Advances in Difference Equations, Vol. 2006, Article ID 16949, 7 pages.

: Sun, T., Xi, H.(2006): On the system of rational difference equations x_{n+1}=f(y_{n-q},x_{n-s}), y_{n+1}=g(x_{n-t},y_{n-p}), Advances in Difference Equations, Vol.2006, Article ID 51520, Pages1-8.

: Yalcinkaya, I., Cinar,C.,Simsek, D.(2008): Global asymptotic stability of a system of difference equations, Applicable Analysis, vol. 87, no. 6, pp. 677--687.

: Yalcinkaya, I., Cinar, C., Atalay, M. (2008): On the solutions of systems of difference equations, Advances in Difference Equations, Vol. 2008, Article ID 143943, 9 pages.

: Yang, X.(2005): On the system of rational difference equations x_{n}=A+y_{n-1}/x_{n-p}y_{n-q}, y_{n}=A+x_{n-1}/x_{n-r}y_{n-s}, Journal of Mathematical Analysis and Applications 307, no. 1, 305--311.