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Summary. This article is a contribution to the current research
field of computational fluid dynamics. We discretize the Stokes flow
for Re = 0 with adaptive hierarchical finite elements and verify the
method with numerical results for the three-dimensional lid-driven
cavity problem. In order to solve the corresponding Stokes problem,
we replace the constraint of the conservation of mass by an elliptic
boundary value problem for the pressure distribution p. Consequent-
ly, the solution of the Stokes problem is reduced to the solution of
d 4 1 Poisson problems, the so-called successive poisson scheme. We
use the hierarchical tensor product finite element method for the nu-
merical solution of the Poisson problems as a basic module. On one
hand, this allows a straightforward approach for the self-adaptive so-
lution process: We start with a regular discretization and create new
elements, where the hierarchical surplus of the weak divergence indi-
cates the need to refine. On the other hand, we use multigrid concepts
for the efficient solution of the large linear systems arising from the
elliptic differential equations. The discussed example shows that the
use of elements with variable aspect ratio pays off for the resolution
of line singularities.
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1. Introduction

The first known mathematician to use hierarchical ideas was Archi-
medes in Terpaywriopos mapaBoliis (the quadrature of the parabo-

la), see [21]. By inductively exhausting the parabola with triangles,
he was able to measure the area given by a parabola, see Fig. 1. In

- 2ph —

Fig. 1. Archimedes’ idea to calculate the area A under the parabola with height
h and base 2b by inductively filling up with triangles: A = hb (1 + i + % + .. ) =
hb 2.

3

1909, Faber [5] introduced the hierarchical basis and explicitly used it
for the representation of functions. Yserentant [24] applied the hierar-
chical basis in 1986 as a preconditioner. In 1990, Zenger [25] directly
represented a smooth multivariate function u with a hierarchical ten-
sor product basis instead of a standard nodal basis. The coeflicients
of this representation, the so-called hierarchical surplusses, decrease
with the volume of the support of the corresponding basis functions.
Consequently, the hierarchical surplus is a very simple criterion for
the decision of whether the contribution to the basis representation
is important enough or not. These considerations lead to the concept
of sparse grids in which we order the basis functions in terms of their
contribution to the basis representation and, with that, in terms of
their support volume. It turns out that sparse grids are a priori Lo-
or H-adaptive grid structures and lessen the so-called “curse of di-
mension”, see Bungartz [2]. To get a rough idea, let us compare the
number of grid points that are necessary to reduce, e.g., the Lq-error
of a linear finite element discretization by a factor 1/4 for a sufficient-
ly smooth problem. Supposing additional regularity conditions, in a
standard nodal approximation space, we asymptotically need 2¢ and
in the sparse grid approximation only twice — independent of the di-
mension d — as many grid points. Based on this concept, an adaptive
hierarchical finite element method is presented in [15]. Using duality
arguments, a user specified adaptation criterion allows an efficient
discretization of a given problem. The aim of this article is to apply
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Fig. 2. The one-dimensional piecewise linear hierarchical basis: basis functions
of the bases By,...,Bs.

these results to a three-dimensional example: the three-dimensional
lid-driven cavity problem. We discuss the discretization of the corre-
sponding Stokes problem and formulate the solution algorithm.

2. Hierarchical Finite Elements

Beginning with the one-dimensional case, we construct the hierarchi-
cal basis By, of depth n for the interval 2(Y) := [0, 1] from the standard
hat function ¢ : R — R,

_ [1-|z|for @ € [-1,+41],
#(z) = {0 otherwise,

and the linear transformation 7,; : [2; — hg;,2; + hy;] — [—1,1]
defined by 7, (z) := (2 — @;)/hs;. All piecewise linear basis functions
¢z; € By, can then be constructed by dilation and translation of ¢

b, (z) = ¢ (10,(z)) Vz € [2j — oy, 2 + har)],

with supp ¢,; = [max{O, z; — hy; }, min{z; 4 hy;, 1}] C [0,1] for
certain given discretization points z; € 20 and the corresponding
grid width 0 < h;; € R. We call ; € [0, 1] the basis point bp(,;) of
the basis function ¢,; € B,,.

Let us construct the hierarchical basis B,, inductively, starting
with By = {do(z) := 1 — z, ¢1(2) := 2}, where we define hy =
hy :=1, see Fig. 2, by two principles:

1. the principle of hierarchy: the family of bases B,, ¥n > 0 build a
nested sequence of sets by B,,_1 C B,, Vn > 0 and

2. the principle of surplus: all basis functions of B,, Yn > 0 may not
influence the representation of the function v € H* (.Q(l)) in any
basis point z; € bp(B,_1) of the basis functions of B,,_;.
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The second principle gives a hint how to construct the basis functions
of B,, ¥n > 0. All basis functions ¢, € B, \ B,,—1 have to fit with
their support exactly in the set of intervals one gets by the partition
of 21 by the basis points z; of the basis functions ¢;; € By—1.

In Fig. 2, the first three steps of constructing B,, are given. For
example, one deduces the only basis function ¢,/, € B; \ By by
exhausting the interval [0, 1] by the support supp ¢, /5 of the function
¢1/2(z) := 1 — |2z — 1| with hy /5 := 1/2. It is easy to deduce that for
all basis functions (,ZSmj € B, \ B,—1 Yn > 1 hold for the grid width
hy; := 27", and therefore, the support of the basis function ¢,; has
the length 21",

Now, we exploit the tensor product approach for the d-dimensional
case and give a recursive formulation of the d-dimensional hierarchical

basis BI(:? ford>1

BY .=B“ VB

n n ng

where we define n? := (n,...,ng) € NJ. We start the recursion

with B1(111) := B,,,. The indices n; ¢ = 1,...,d indicate the depths of
the basis BI(:? in the directions 7. In the following considerations, we
suppress the upper dimension index (d) whenever the dimension d is

clear from the context. The piecewise multilinear basis functions are

defined as

3 () = 95T () -6 (23)

Tig\ Jd

d—1
= [ 60y, (@) - 82,a(20)
=1

d
= H ¢z’ji (ml)’
=1

where z(® = (1,...,24) € 2@ :=[0,1]% The coordinates of the
basis point x; := (zj,,...,%;,) of the d-dimensional basis function
@x; are given by the d basis points of B, of the corresponding one-
dimensional basis functions in all directions ¢ =1, ..., d, see also the
subspace scheme in Fig. 3. To get an impression of a typical two-

(@)
nd

is called Vlfj) =< BI(:? >CV = Hl(.Q(d)). Note that Vlfj) is also
generated by a classical tensor nodal basis with 21! basis functions

in direction ¢ =1, ..., d.

dimensional basis function, see Fig. 4. The space spanned by B
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Fig. 3. The multidimensional piecewise linear hierarchical basis: two-dimensional
subspace scheme with supports supp ¢x; and basis points x; of the corresponding
hierarchical basis function ¢x;. (For example, the hierarchical basis functions with
the grey supports are displayed in Fig. 4.)
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Fig. 4. The multidimensional piecewise linear hierarchical basis: illustration of
the tensor product approach for piecewise bilinear basis functions. The corre-
sponding supports are shown in Fig. 3 (grey).

Any function u of the space Vlfj) has the hierarchical basis repre-
sentation

und(x) = Z uhldﬁij ¢Xj (X)a

Xjebp(B(Z))
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with uﬂid‘iij € RVoy, € Bl(i). The coeflicients uﬂid‘il;j correspond to the
increments of data coming from the basis function ¢y,, and therefore,
they are also called hierarchical surplusses.

As a model problem, we consider Poisson’s equation with Dirichlet

and Neumann boundary conditions

—Au= fin ),
(1) u:gon(Z);éFDCF;:aQ(d),
dou=mon I'y:=T\Ip.

Let us denote the standard Ls-inner product by (.,.)x and by ||.||x
the corresponding norm on 29, resp. I'. The weak or variational
formulation of (1) reads then

(2) (Vé,Vu)g = (¢, flg+(¢,m)p YoeV.

We also call (2) the continuous primal problem. Using the finite el-
ement method, we obtain an approximation u,, € < A, > of the
analytical solution u € V in the ansatz space < A,, > C V by solving
the discrete primal problem of (2) given by

(v¢a vun)g — (¢a fn)g + (¢a mn)]" V¢ € Tna

where < T,, > C V is called the test space. Sticking to a Ritz-Galerkin
(d)

L4+ The discretization underlies

approach, we choose T,, = A, C B
the grid G,, :== bp (4,).

The function u,, = EXijp(An) Un,x; ° (;SXJ. interpolates the Dirich-
let boundary value function g on I' N bp(4,.), fn = EXijp(An) frx; -
¢x; interpolates the source function f in 21N bp(A,) and m,, =
EXijp(An) My, x; " Px; interpolates the Neumann boundary value func-
tion m on I'y N bp(A,). We end up with a system of linear equa-
tions S - u,, = b,, for the coordinate vector u,, := (un,Xj)Xjebp(An) €
RY of the function u,. We correspondingly define the coordinate
vectors f, = (fn,Xj)xJ-ebp(An) € RY of the source function f and

my, = (mn,Xj)xJ-ebp(An) € RY of the Neumann boundary function.
The vector b, then is the load vector. The matrix S is known as
the stiffness matriz with entries 5%y X; defined for the bases functions

¢Xk € Tn a:nd ’Iﬁbxj € An, S = (Sxkvxj) c RNXN and

Xy €bp(Thn),x;E€bp(An)
Sxk,Xj = (v¢xka V¢Xj) ,Q(d) .
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3. Discretization of the Stokes Equations

We consider the d-dimensional domain §2 := [0,1]¢ with boundary
I' := 012. The variables u; : 2 - R i=1,...,d describe the velocity
field u == (uy,...,uq) € R? and the scalar p : 2 — R the pres-
sure. The Stokes equations describe an incompressible, steady state
and laminar flow, with the kinematic viscosity v € R, wherein the
influence of convection is assumed to be small (density p = 0)

(3) —vAu;+0,,p=0 on 2, i=1,...,d
d

(4) Zawi“i =0on {2,
=1

with appropriate boundary conditions for the velocity field u
(5) Uil = ug,; or 8mjui‘1ﬂ:u07i7j Vi,j=1,...,d.

Equation (3) describes the conservation of momentum. Equation (4)
is derived from the conservation of mass.

A principal requirement in the solution of the Stokes equation (3)
and (4) is the determination of the pressure distribution p. Therefore,
we build the divergence of the momentum equations (3) Using (4),
this leads to the Laplace equation for the pressure

(6) — Ap=0on £2.

Equation (6) defines an elliptic boundary value problem, hence bound-
ary conditions are needed. The Dirichlet boundary condition is avail-
able only at an inlet and given by

(7) p|1"ﬁinlet = Po-

On all other parts of the boundary I', we therefore use the divergence
equation (4) prescribing normal derivatives of the velocity compo-
nents u;

d
(8) Onjujlp =~ Y Oouw; G=1,...,d

i=1,i#j

on the surface I" orthogonal to the direction j!. Note that, in case of
Dirichlet boundary conditions (5), the derivatives 0,;u; for 7 # j can
be analytically computed.
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Fig. 5. The two-dimensional channel flow: required boundary conditions for the
elliptic boundary value problem (6) for the pressure distribution p: Dirichlet
boundary conditions po on the inlet ;1 = 0 according to (7) and normal deriva-
tives iju,‘|r , 7 = 1,2 for the velocity field u on 1 = 1, z2 = 0, and =2 = 1
according to (8).

In Fig. 5 we give the additional boundary conditions for the two-
dimensional channel flow as an example.

In summary, one can say that the solution of the Stokes problem
(3)and (4)suffices the d + 1 equations given in (3) and (6) with the
boundary conditions (5) and (8) for the velocity field u and (7) for
the pressure p.

3.1. The Discretization

In this subsection, we give a primitive variable Galerkin formulation
of the Stokes problem. By the standard finite element arguments, we
establish from (3)for the velocity field u and from (6) for the pressure

p the following weak formulation: find w; € H}(£2) i = 1,...,d and
p € H'(£2) such that

d
1
g (3mjv,3mjui)ﬂ = (On;v,p); Vv € HY2),i=1,...,d,
Jj=1

d
(10) > (0u;v,00p) , =0 Vv € H(R2)
7=1

hold.

! Note that we could use other boundary conditions, too, e.g. Neumann bound-
ary conditions for the pressure p. However, the corresponding numerical results
were oscillating.



Adaptive Hierarchical Tensor Product FE for Fluid Dynamics 79

We discretize the continuous formulation of the Stokes problem (9)
and (10). Therefore, we choose the test and ansatz bases T, 4,, C
H'(£2) introduced in Section 2. In the following considerations, we
discuss the case for the Dirichlet boundary conditions for the velocity.
With the notation used there, we end up with a system of linear
equations

1
(11) Su; = —K;p i=1,...,d
v

(12) Sp=0.

We incorporate the boundary condition (5) for the velocity field u
n (11) and the Dirichlet boundary condition (7) for the pressure
p in (12). The additional boundary conditions (8) are used for the
coupling of the equations (11) and (12) in an outer iteration. There-
fore, we start the solution of equation (12) in the first iteration step
with arbitrary Dirichlet boundary values p°| M\inlet o0 the remaining
boundary. In the following iteration steps, we correct these bound-
ary values p°| Minlet With the residuals of the discrete weak divergence
according to (4)

d
(13) > Kiu;.
=1

This means that the outer iteration corrects the Dirichlet bound-
ary values p| Minlet of the pressure distribution p until the diver-
gence equation is guaranteed also on the remaining boundary. Be-
cause equation (6) is a consequence of (10) the divergence equation
holds also in the interior of 2.

The numerical solution of the original Stokes problem given by
(3) and (4)is reduced to a sequence of d + 1 Poisson equations (11)
and (12) with Dirichlet boundary conditions. Hereby equation (11)
results from the divergence equation. For the update of the Dirichlet
boundary values of the pressure p, we use the weak divergence (13)
Therefore, the divergence equation holds in the interior of {2 and on
I’ \ inlet. We start the iteration with initial guesses for the veloci-
ty u’ and the pressure p’. For the outer iteration see Algorithm 1
“Successive Poisson Equation”. We get a sequence of solutions for
the values of the velocities ui?, i=1,...,d, and the pressure p* for
k=0,1,..., kpnax. So far, the convergence of the outer iteration has
only been observed numerically. In all computations we had no prob-
lems with oscillating solutions.
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Algorithm 1 Successive Poisson Equation

u® and p° {initial guesses}

for k =0 to kmax do
solve (11) for u**! with p* {Dirichlet and Neumann conditions (5) }
correct the Dirichlet conditions p**"|,. \inlet {weak divergence (13) }
solve (12) for p**' {Dirichlet condition (7) for the inlet p**'| . 1.}

end for

3.2. The Adaptation

We use the adaptivity tools developed in [15]. A refined discretiza-
tion creates new grid points where the hierarchical surplus of the
residuals of the weak divergence (13) indicates the need to refine. All
calculations, that are the solution of the Poisson problems and the
computation of the weak divergence, are carried out on the same grid
structure, starting with a full grid with depth t, = 2 or t; = 3.

In the presented numerical example, we have artificial singular-
ities in the corners due to the prescribed boundary values. These
singularities are dominating the grid refinement. Therefore, it turned
out to be useful to fix the depth ¢ for the refinement steps, until no
new grid points are created. After that, we increase the allowed max-
imum depth ¢ by 1, and start the refinement process again, see also
Algorithm 2 “Adaptive Stokes”. This ensures that not only the final

Algorithm 2 Adaptive Stokes

construct an initial coarse grid Gy {here a full grid of depth #, = 2,3}
k:=0
for t =ty to tmax do
repeat

solve the discrete problem on grid Gy {thereto see the Algorithm 1}

compute the weak divergence (13) for each element in Gy

decide which elements have to be refined

construct the next grid Gr41 only with elements with depth <¢

k+=1
until no new grid points with depth ¢ are created
end for

result represents the physics correctly, but also all intermediate steps.
As initial guesses for the velocity field u" and p° on a refined grid
structure G411, we utilize the interpolated values from the results
corresponding to the grid Gg. In the computation of the numerical
results, we need about 5 refinement steps with fixed depth ¢ until no
new grid points are created.
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4. Three-dimensional Lid-driven Cavity

This section provides numerical results for a flow driven by only one
single (lid) plate. We present the underlying adaptive grids and dis-
cuss the computed flow patterns.

The two-dimensional lid-driven cavity has especially received con-
siderable attention in the literature because of the complex flow char-
acteristics exhibited in a relatively simple geometry. Therefore, it was,
and still is, a popular example for testing and comparing numerical
methods. This problem has been studied numerically using various
techniques, including finite-difference, see e.g. [3,13,7,6,14], multi-
grid, see e.g. [20,1], spectral, see e.g. [16,17], finite element, see e.g.
[12] and integral equation methods, see e.g. [10, 8]. For the Stokes flow,
analytical solutions based on eigenfunction expansions have been de-
rived in [9,18,22]. An experimental apparatus and data are presented
n [13]. The lid-driven cavity problem has also been of great interest
as a test problem for evaluating numerical procedures for solving the
Navier-Stokes equations.

In comparison with the two-dimensional case, there is only few
literature for the three-dimensional lid-driven cavity, see e.g. [11,23].
For a detailed discussion of similar three-dimensional problems (a
cylindrical container and a disk-driven problem) see [19,4]. The three-
dimensional lid-driven cavity is in particular interesting, because the
planar motion of the plate induces flow motion in the third dimension.

The flow geometry and the moving plate of the three-dimensional
lid-driven cavity problem are displayed in Fig. 6. Analogical to the

|
|
|
Stokes |

Y

_——— N

Equation N

Fig. 6. The three-dimensional lid-driven cavity: geometry and moving plate in
the lid plane z2 = 1 in positive x; direction.
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two-dimensional case, the flow is driven by the uniform translation
in positive z; direction of a plate located in the lid plane z, =1

(1,0,0)T for z, = 1 and
=0 fore; =0,2,=1,2,=0,23=0, or 23 = 1.

(14) o

Unfortunately, in this article, we can only give a short discussion
of the results. We start with the underlying adaptive grid used in
the computation. Fig. 7 shows a three-dimensional visualization of

Fig. 7. The three-dimensional lid-driven cavity: adaptive grid (14147 grid
points). The lid plate is moving from left to right. (The coordinates are given
in Fig. 6.)

an adaptive grid with 14 147 grid points. Fig. 8 shows four typical
grids in the #; — z5-planes (23 = 0, 8/64, 20/64, and 31/64). Due to
the hierarchical approach, the number of grid points in the different
planes is of different order of magnitude: 1361, 561, 223, and 30.
We notice that there is a concentration of grid points next to the
moving lid, especially along the two lines defined by z; = 0, 2, =1
and z; = 1, zo = 1. This is due to the singularity in the velocity
boundary conditions (14). The qualitatively different resolution of
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1L

zs = 20/64 zs = 31/64
Fig. 8. The three-dimensional lid-driven cavity: grids in the x; — z2-planes with

z3 = const. for z3 = 0, 8/64, 20/64, 31/64 (1361, 561, 223, and 30 grid points).
The lid is situated at the top and driven from left to right.

these line singularities is an important advantage of the hierarchical
approach.

In order to get an idea of the three-dimensional flow, we display
the velocity fields for the planes z; = const with ¢ = 1, 2, 3. Note that
the vectors in different plots are comparable, because they are not
normalized.

First, we look at the velocity fields in the #; — —zs-planes. Because
the flow is symmetric about the plane 23 = 32/64, we only show
21 — —zo-planes with 0 < 23 < 1/2. Fig. 9 provides the velocity fields
for the 1 — —z,-planes with 23 = 2/64, 4/64, 8/64,16/64, and 32/64.
Next to the symmetry plane 23 = 32/64, the flow pattern is similar
to the two-dimensional case. The flow patterns are weakened by the
resistance of the side plate, as one would expect. The deviation from
the two-dimensional case is greatest near the side plate ( 3 = 0). In
other word, the location of the primary vortex center and the norm
of the velocity vectors depend on the variable z3.
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Due to the more or less distinct primary vortex, the global flow
structure is divided into a flow downstream area (half cube z; > 1/2)
and a flow upstream area (half cube ; < 1/2). In the symmetry plane
z; = 1/2, we expect no flow movement. This behaviour is exactly
reflected in the plots of the velocity fields in the #5 — —e3-planes
with z; = 1/64, 16/64, 32/64, 48 /64, and 63/64, see Fig. 10. Again,
we observe the influence of the two non-moving plates in the planes
z7 = 0 and z; = 1: the strength of the flow is weakened towards the
front and the back of the flow geometry.

From the discussion of the #; — —5- and the x5 — —z3-planes, we
can imagine the flow as a (primary) rolling pin made of gum and fixed
at the ends. This is also supported by the plots of the #; — —z3-planes
velocity fields, see Fig. 11. It is clear that next to the lid plate in the
plane ¢, = 1, the flow is almost uniform in the positive #; direction,
e.g. see the 1 — —z3-plane with 2, = 63/64. In the #; — z3-plane with
o = 48/64, we can see that the vectors of the velocity field diverges
from the symmetry axis 23 = 32/64 next to the plate 2; = 1. Whereas
the vectors of the velocity field next to the plate z; = 0 converges
into the parallel flow pattern. The recirculating flow at the bottom
of the cube is displayed in the #; — #3-planes with z, = 32/64 and
1/64. Still, we have convergence to the symmetry axis next to the
plate z; = 0 and divergence next to the plate z; = 1. Again, the
bottom plate 29 = 0 weakens the strength of the flow. Next to both
plates, the lid and the bottom plate, the vectors of the velocity field
are almost parallel. Only in the region 5 ~ 43/64, the nature of the
flow differs qualitatively.

Actually, this is the region, where the main stream turns the direc-
tion from positive to negative z;-direction. It is very interesting that
in between these parallel flow regions, two little vortices symmetric
to the z3 = 1/2 axis develop, see the 2; — —z3-plane 2, = 43/64. A
real three dimensional phenomenon! And, hereby, we want to close
the discussion of the three-dimensional lid-driven cavity.

5. Concluding Remarks

In this paper, we have developed a solution method for the Stokes
equations in the formulation of the primitive variables. Because, we
use a pressure correction scheme, we end up with Algorithm 1 “Suc-
cessive Poisson Equation”. We discretize these Poisson equations with
the tools of the adaptive hierarchical finite element method, presented
in [15]. In order to satisfy the divergence equation, we use the hier-
archical surplus of the weak divergence (13) as adaptation criterion.
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For the solution of the arising systems of linear equations, we apply
the multigrid solver, see also [15]. To ensure that not only the final,
but also all intermediate steps of the adaptation process, give the
physics correctly, we perform Algorithm 2 “Adaptive Stokes”. Here,
we fix the depth t for the refinement steps, until no new grid points
are created. Afterwards, we increase the allowed maximum depth ¢
by 1.

The discussion of the numerical results shows that the primary
flow structures for the different examples are given correctly, even
for coarse discretizations. All results are quite satisfying and very
encouraging.

In the opinion of the authors, there is a huge potential in the
method of adaptive hierarchical tensor product finite elements. How-
ever, there are, at least, three main subjects of future work. First,
we have to speed up the outer iteration, because then we can use
much finer discretizations. This is necessary for the accuracy of the
solutions. Second, we have to implement different adaptation criteria,
in order to resolve more details of the flow patterns, e.g. the coun-
terrotating secondary eddies. In the context of adaptation, it might
also be of interest to refine the velocity components and the pressure
separately, leading to different grid structures. Finally, we must de-
sign a robust Navier-Stokes solver. In a first attempt, we calculated
solutions of the two-dimensional driven cavity with Reynolds number

Re = 30.
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