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Summary� This article is a contribution to the current research
�eld of computational �uid dynamics� We discretize the Stokes �ow
for Re � � with adaptive hierarchical �nite elements and verify the
method with numerical results for the three�dimensional lid�driven
cavity problem� In order to solve the corresponding Stokes problem�
we replace the constraint of the conservation of mass by an elliptic
boundary value problem for the pressure distribution p� Consequent�
ly� the solution of the Stokes problem is reduced to the solution of
d	 
 Poisson problems� the so�called successive poisson scheme� We
use the hierarchical tensor product �nite element method for the nu�
merical solution of the Poisson problems as a basic module� On one
hand� this allows a straightforward approach for the self�adaptive so�
lution process� We start with a regular discretization and create new
elements� where the hierarchical surplus of the weak divergence indi�
cates the need to re�ne� On the other hand� we use multigrid concepts
for the e�cient solution of the large linear systems arising from the
elliptic dierential equations� The discussed example shows that the
use of elements with variable aspect ratio pays o for the resolution
of line singularities�
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�� Introduction

The �rst known mathematician to use hierarchical ideas was Archi�
medes in T�������	
��o� ����o���� �the quadrature of the parabo�
la�� see ��
�� By inductively exhausting the parabola with triangles�
he was able to measure the area given by a parabola� see Fig� 
� In
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Fig� �� Archimedes� idea to calculate the area A under the parabola with height
h and base �b by inductively �lling up with triangles
 A � hb
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���� Faber ��� introduced the hierarchical basis and explicitly used it
for the representation of functions� Yserentant ���� applied the hierar�
chical basis in 
��� as a preconditioner� In 
���� Zenger ���� directly
represented a smooth multivariate function u with a hierarchical ten�
sor product basis instead of a standard nodal basis� The coe�cients
of this representation� the so�called hierarchical surplusses� decrease
with the volume of the support of the corresponding basis functions�
Consequently� the hierarchical surplus is a very simple criterion for
the decision of whether the contribution to the basis representation
is important enough or not� These considerations lead to the concept
of sparse grids in which we order the basis functions in terms of their
contribution to the basis representation and� with that� in terms of
their support volume� It turns out that sparse grids are a priori L��
or H��adaptive grid structures and lessen the so�called �curse of di�
mension�� see Bungartz ���� To get a rough idea� let us compare the
number of grid points that are necessary to reduce� e�g�� the L��error
of a linear �nite element discretization by a factor 
�� for a su�cient�
ly smooth problem� Supposing additional regularity conditions� in a
standard nodal approximation space� we asymptotically need �d and
in the sparse grid approximation only twice � independent of the di�
mension d � as many grid points� Based on this concept� an adaptive
hierarchical �nite element method is presented in �
��� Using duality
arguments� a user speci�ed adaptation criterion allows an e�cient
discretization of a given problem� The aim of this article is to apply
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Fig� �� The one�dimensional piecewise linear hierarchical basis
 basis functions
of the bases B�� � � � �B��

these results to a three�dimensional example� the three�dimensional
lid�driven cavity problem� We discuss the discretization of the corre�
sponding Stokes problem and formulate the solution algorithm�

�� Hierarchical Finite Elements

Beginning with the one�dimensional case� we construct the hierarchi�
cal basis Bn of depth n for the interval ���� �� ��� 
� from the standard
hat function � � R� R�

��x� ��

�

� jxj for x � ��
�	
��
� otherwise�

and the linear transformation �xj � �xj � hxj � xj 	 hxj � � ��
� 
�
de�ned by �xj�x� �� �x�xj��hxj � All piecewise linear basis functions
�xj � Bn can then be constructed by dilation and translation of �

�xj�x� �� �
�
�xj�x�

�
�x � �xj � hxj � xj 	 hxj ��

with supp�xj ��
�
maxf�� xj � hxjg�minfxj 	 hxj � 
g

�
� ��� 
� for

certain given discretization points xj � ���� and the corresponding
grid width � � hxj � R� We call xj � ��� 
� the basis point bp��xj� of
the basis function �xj � Bn�

Let us construct the hierarchical basis Bn inductively� starting
with B� �� f���x� �� 
 � x� ���x� �� xg� where we de�ne h� ��
h� �� 
� see Fig� �� by two principles�


� the principle of hierarchy� the family of bases Bn �n � � build a
nested sequence of sets by Bn�� � Bn �n � � and

�� the principle of surplus� all basis functions of Bn �n � � may not
in�uence the representation of the function u � H�

�
����

�
in any

basis point xj � bp�Bn��� of the basis functions of Bn���
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The second principle gives a hint how to construct the basis functions
of Bn �n � �� All basis functions �xj � Bn n Bn�� have to �t with
their support exactly in the set of intervals one gets by the partition
of ���� by the basis points xj of the basis functions �xj � Bn���

In Fig� �� the �rst three steps of constructing Bn are given� For
example� one deduces the only basis function ���� � B� n B� by
exhausting the interval ��� 
� by the support supp ���� of the function
�����x� �� 
� j�x� 
j with h��� �� 
��� It is easy to deduce that for
all basis functions �xj � Bn n Bn�� �n � 
 hold for the grid width
hxj �� ��n� and therefore� the support of the basis function �xj has

the length ���n�
Now� we exploit the tensor product approach for the d�dimensional

case and give a recursive formulation of the d�dimensional hierarchical

basis B
�d�
nd

for d � 


B
�d�
nd

�� B
�d���
nd��

� Bnd �

where we de�ne nd �� �n�� � � � � nd� � Nd
� � We start the recursion

with B
���
n� �� Bn� � The indices ni i � 
� � � � � d indicate the depths of

the basis B
�d�
nd

in the directions i� In the following considerations� we
suppress the upper dimension index �d� whenever the dimension d is
clear from the context� The piecewise multilinear basis functions are
de�ned as

�
�d�
xj �x

�d�� �� �
�d���
xj �x�d���� � ����xjd

�x
���
jd

�

��
d��Y
i��

�xji �xi� � �xjd�xd�

�
dY
i��

�xji �xi��

where x�d� �� �x�� � � � � xd� � ��d� �� ��� 
�d� The coordinates of the
basis point xj �� �xj� � � � � � xjd� of the d�dimensional basis function
�xj are given by the d basis points of Bni of the corresponding one�
dimensional basis functions in all directions i � 
� � � � � d� see also the
subspace scheme in Fig� �� To get an impression of a typical two�

dimensional basis function� see Fig� �� The space spanned by B
�d�
nd

is called V
�d�
nd

��� B
�d�
nd

�� V � H����d��� Note that V
�d�
nd

is also

generated by a classical tensor nodal basis with �ni�� basis functions
in direction i � 
� � � � � d�
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Fig� �� The multidimensional piecewise linear hierarchical basis
 two�dimensional
subspace scheme with supports supp �xj

and basis points xj of the corresponding
hierarchical basis function �xj

� �For example� the hierarchical basis functions with
the grey supports are displayed in Fig� ���

Fig� �� The multidimensional piecewise linear hierarchical basis
 illustration of
the tensor product approach for piecewise bilinear basis functions� The corre�
sponding supports are shown in Fig� � �grey��

Any function u of the space V
�d�
nd

has the hierarchical basis repre�
sentation

und�x� �
X

xj�bp�B
�d�

nd
�

uhiernd�xj
�xj�x��
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with uhier
nd�xj

� R ��xj � B
�d�
nd

� The coe�cients uhier
nd�xj

correspond to the

increments of data coming from the basis function �xj � and therefore�
they are also called hierarchical surplusses�

As a model problem� we consider Poisson�s equation with Dirichlet
and Neumann boundary conditions

�
�
��u � f in ��d��

u � g on 	 
� �D � � �� ���d��
��u � m on �N �� � n �D�

Let us denote the standard L��inner product by �����X and by k�kX
the corresponding norm on ��d�� resp� � � The weak or variational
formulation of �
� reads then

��� �r��ru�� � ��� f�� 	 ���m�� �� � V�

We also call ��� the continuous primal problem� Using the �nite el�
ement method� we obtain an approximation un �� An � of the
analytical solution u � V in the ansatz space � An �� V by solving
the discrete primal problem of ��� given by

�r��run�� � ��� fn�� 	 ���mn�� �� � Tn�

where � Tn �� V is called the test space� Sticking to a Ritz�Galerkin

approach� we choose Tn � An � B
�d�
nd

� The discretization underlies
the grid Gn �� bp �An��

The function un �
P

xj�bp�An�
un�xj � �xj interpolates the Dirich�

let boundary value function g on � � bp�An�� fn �
P

xj�bp�An� fn�xj �

�xj interpolates the source function f in ��d� � bp�An� and mn �P
xj�bp�An�

mn�xj ��xj interpolates the Neumann boundary value func�

tion m on �N � bp�An�� We end up with a system of linear equa�
tions S � un � bn for the coordinate vector un �� �un�xj�xj�bp�An� �

R
N of the function un� We correspondingly de�ne the coordinate

vectors fn �� �fn�xj�xj�bp�An� � R
N of the source function f and

mn �� �mn�xj�xj�bp�An� � R
N of the Neumann boundary function�

The vector bn then is the load vector� The matrix S is known as
the sti	ness matrix with entries sxk�xj de�ned for the bases functions

�xk � Tn and �xj � An� S �
�
sxk�xj

�
xk�bp�Tn��xj�bp�An�

� RN�N and

sxk�xj �
�
r�xk �r�xj

�
��d� �
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�� Discretization of the Stokes Equations

We consider the d�dimensional domain � �� ��� 
�d with boundary
� �� ��� The variables ui � � � R i � 
� � � � � d describe the velocity
�eld u �� �u�� � � � � ud� � Rd and the scalar p � � � R the pres�
sure� The Stokes equations describe an incompressible� steady state
and laminar �ow� with the kinematic viscosity � � R� wherein the
in�uence of convection is assumed to be small �density � � ��

��� � ��ui 	 �xip � � on �� i � 
� � � � � d

���
dX
i��

�xiui � � on ��

with appropriate boundary conditions for the velocity �eld u

��� uij� � u��i or �xjui
��
�
� u��i�j �i� j � 
� � � � � d�

Equation ��� describes the conservation of momentum� Equation ���
is derived from the conservation of mass�

A principal requirement in the solution of the Stokes equation ���
and ��� is the determination of the pressure distribution p� Therefore�
we build the divergence of the momentum equations ��� Using ����
this leads to the Laplace equation for the pressure

��� ��p � � on ��

Equation ��� de�nes an elliptic boundary value problem� hence bound�
ary conditions are needed� The Dirichletboundary condition is avail�
able only at an inlet and given by

� � pj� � inlet � p��

On all other parts of the boundary � � we therefore use the divergence
equation ��� prescribing normal derivatives of the velocity compo�
nents uj

��� �xjuj
��
�
� �

dX
i���i ��j

�xiui j � 
� � � � � d

on the surface � orthogonal to the direction j�� Note that� in case of
Dirichlet boundary conditions ���� the derivatives �xiui for i 
� j can
be analytically computed�
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Fig� �� The two�dimensional channel �ow
 required boundary conditions for the
elliptic boundary value problem ��� for the pressure distribution p
 Dirichlet
boundary conditions p� on the inlet x� � � according to ��� and normal deriva�
tives �xjuj

��
�
� j � �� � for the velocity �eld u on x� � �� x� � �� and x� � �

according to ����

In Fig� � we give the additional boundary conditions for the two�
dimensional channel �ow as an example�

In summary� one can say that the solution of the Stokes problem
���and ���su�ces the d 	 
 equations given in ��� and ��� with the
boundary conditions ��� and ��� for the velocity �eld u and � � for
the pressure p�


��� The Discretization

In this subsection� we give a primitive variable Galerkin formulation
of the Stokes problem� By the standard �nite element arguments� we
establish from ���for the velocity �eld u and from ��� for the pressure
p the following weak formulation� �nd ui � H���� i � 
� � � � � d and
p � H���� such that

���
dX

j��

�
�xjv� �xjui

�
�
�




�
��xiv� p�� �v � H����� i � 
� � � � � d�

�
��
dX

j��

�
�xjv� �xjp

�
�
� � �v � H����

hold�

� Note that we could use other boundary conditions� too� e�g� Neumann bound�
ary conditions for the pressure p� However� the corresponding numerical results
were oscillating�
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We discretize the continuous formulation of the Stokes problem ���
and �
��� Therefore� we choose the test and ansatz bases Tn� An �
H���� introduced in Section �� In the following considerations� we
discuss the case for the Dirichlet boundary conditions for the velocity�
With the notation used there� we end up with a system of linear
equations

�

� Sui �



�
Ki p i � 
� � � � � d

�
�� Sp � ��

We incorporate the boundary condition ��� for the velocity �eld u

in �

� and the Dirichlet boundary condition � � for the pressure
p in �
��� The additional boundary conditions ��� are used for the
coupling of the equations �

� and �
�� in an outer iteration� There�
fore� we start the solution of equation �
�� in the �rst iteration step
with arbitrary Dirichlet boundary values p�j�ninlet on the remaining
boundary� In the following iteration steps� we correct these bound�
ary values p�j�ninlet with the residuals of the discrete weak divergence
according to ���

�
��
dX
i��

Ki ui�

This means that the outer iteration corrects the Dirichlet bound�
ary values p�j�ninlet of the pressure distribution p until the diver�
gence equation is guaranteed also on the remaining boundary� Be�
cause equation ��� is a consequence of �
�� the divergence equation
holds also in the interior of ��

The numerical solution of the original Stokes problem given by
��� and ���is reduced to a sequence of d 	 
 Poisson equations �

�
and �
�� with Dirichlet boundary conditions� Hereby equation �

�
results from the divergence equation� For the update of the Dirichlet
boundary values of the pressure p� we use the weak divergence �
��
Therefore� the divergence equation holds in the interior of � and on
� n inlet� We start the iteration with initial guesses for the veloci�
ty u� and the pressure p�� For the outer iteration see Algorithm 

�Successive Poisson Equation�� We get a sequence of solutions for
the values of the velocities uki � i � 
� � � � � d� and the pressure pk for
k � �� 
� � � � � kmax� So far� the convergence of the outer iteration has
only been observed numerically� In all computations we had no prob�
lems with oscillating solutions�
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Algorithm � Successive Poisson Equation

u� and p� finitial guessesg
for k � � to kmax do

solve ���� for uk	� with pk fDirichlet and Neumann conditions ��� g
correct the Dirichlet conditions pk	�j

� n inlet fweak divergence ���� g

solve ���� for pk	� fDirichlet condition ��� for the inlet pk	�j
� � inletg

end for


��� The Adaptation

We use the adaptivity tools developed in �
��� A re�ned discretiza�
tion creates new grid points where the hierarchical surplus of the
residuals of the weak divergence �
�� indicates the need to re�ne� All
calculations� that are the solution of the Poisson problems and the
computation of the weak divergence� are carried out on the same grid
structure� starting with a full grid with depth t� � � or t� � ��

In the presented numerical example� we have arti�cial singular�
ities in the corners due to the prescribed boundary values� These
singularities are dominating the grid re�nement� Therefore� it turned
out to be useful to �x the depth t for the re�nement steps� until no
new grid points are created� After that� we increase the allowed max�
imum depth t by 
� and start the re�nement process again� see also
Algorithm � �Adaptive Stokes�� This ensures that not only the �nal

Algorithm � Adaptive Stokes
construct an initial coarse grid G� fhere a full grid of depth t� � �� �g
k 
� �
for t � t� to tmax do

repeat

solve the discrete problem on grid Gk fthereto see the Algorithm �g
compute the weak divergence ���� for each element in Gk

decide which elements have to be re�ned
construct the next grid Gk	� only with elements with depth � t
k� � �

until no new grid points with depth t are created
end for

result represents the physics correctly� but also all intermediate steps�
As initial guesses for the velocity �eld u� and p� on a re�ned grid
structure Gk��� we utilize the interpolated values from the results
corresponding to the grid Gk� In the computation of the numerical
results� we need about � re�nement steps with �xed depth t until no
new grid points are created�
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	� Three�dimensional Lid�driven Cavity

This section provides numerical results for a �ow driven by only one
single �lid� plate� We present the underlying adaptive grids and dis�
cuss the computed �ow patterns�

The two�dimensional lid�driven cavity has especially received con�
siderable attention in the literature because of the complex �ow char�
acteristics exhibited in a relatively simple geometry� Therefore� it was�
and still is� a popular example for testing and comparing numerical
methods� This problem has been studied numerically using various
techniques� including �nite�dierence� see e�g� ���
�� ���
��� multi�
grid� see e�g� ����
�� spectral� see e�g� �
��
 �� �nite element� see e�g�
�
�� and integral equation methods� see e�g� �
����� For the Stokes �ow�
analytical solutions based on eigenfunction expansions have been de�
rived in ���
������ An experimental apparatus and data are presented
in �
��� The lid�driven cavity problem has also been of great interest
as a test problem for evaluating numerical procedures for solving the
Navier�Stokes equations�

In comparison with the two�dimensional case� there is only few
literature for the three�dimensional lid�driven cavity� see e�g� �

�����
For a detailed discussion of similar three�dimensional problems �a
cylindrical container and a disk�driven problem� see �
����� The three�
dimensional lid�driven cavity is in particular interesting� because the
planar motion of the plate induces �owmotion in the third dimension�

The �ow geometry and the moving plate of the three�dimensional
lid�driven cavity problem are displayed in Fig� �� Analogical to the

x

x

x

1

2

3 Stokes

Equation

(1,0,0)
T

0
1

1

1

Fig� �� The three�dimensional lid�driven cavity
 geometry and moving plate in
the lid plane x� � � in positive x� direction�
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two�dimensional case� the �ow is driven by the uniform translation
in positive x� direction of a plate located in the lid plane x� � 


�
��
u � �
� �� ��T for x� � 
 and
u � 
 for x� � �� x� � 
� x� � �� x� � �� or x� � 
�

Unfortunately� in this article� we can only give a short discussion
of the results� We start with the underlying adaptive grid used in
the computation� Fig�  shows a three�dimensional visualization of

Fig� 	� The three�dimensional lid�driven cavity
 adaptive grid ��� ��� grid
points�� The lid plate is moving from left to right� �The coordinates are given
in Fig� ���

an adaptive grid with 
� 
� grid points� Fig� � shows four typical
grids in the x� � x��planes �x� � �� ����� ������ and �
����� Due to
the hierarchical approach� the number of grid points in the dierent
planes is of dierent order of magnitude� 
 ��
� ��
� ���� and ���
We notice that there is a concentration of grid points next to the
moving lid� especially along the two lines de�ned by x� � �� x� � 

and x� � 
� x� � 
� This is due to the singularity in the velocity
boundary conditions �
��� The qualitatively dierent resolution of
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x� � � x� � ����

x� � ����� x� � �����

Fig� 
� The three�dimensional lid�driven cavity
 grids in the x�� x��planes with
x� � const� for x� � �� ����� ������ ����� �� ���� ���� ���� and �� grid points��
The lid is situated at the top and driven from left to right�

these line singularities is an important advantage of the hierarchical
approach�

In order to get an idea of the three�dimensional �ow� we display
the velocity �elds for the planes xi � const with i � 
� �� �� Note that
the vectors in dierent plots are comparable� because they are not
normalized�

First� we look at the velocity �elds in the x���x��planes� Because
the �ow is symmetric about the plane x� � ������ we only show
x���x��planes with � � x� � 
��� Fig� � provides the velocity �elds
for the x���x��planes with x� � ����� ����� ����� 
����� and ������
Next to the symmetry plane x� � ������ the �ow pattern is similar
to the two�dimensional case� The �ow patterns are weakened by the
resistance of the side plate� as one would expect� The deviation from
the two�dimensional case is greatest near the side plate � x� � ��� In
other word� the location of the primary vortex center and the norm
of the velocity vectors depend on the variable x��
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Due to the more or less distinct primary vortex� the global �ow
structure is divided into a �ow downstream area �half cube x� � 
���
and a �ow upstream area �half cube x� � 
���� In the symmetry plane
x� � 
��� we expect no �ow movement� This behaviour is exactly
re�ected in the plots of the velocity �elds in the x� � �x��planes
with x� � 
���� 
����� ������ ������ and ������ see Fig� 
�� Again�
we observe the in�uence of the two non�moving plates in the planes
x� � � and x� � 
� the strength of the �ow is weakened towards the
front and the back of the �ow geometry�

From the discussion of the x���x�� and the x���x��planes� we
can imagine the �ow as a �primary� rolling pin made of gum and �xed
at the ends� This is also supported by the plots of the x���x��planes
velocity �elds� see Fig� 

� It is clear that next to the lid plate in the
plane x� � 
� the �ow is almost uniform in the positive x� direction�
e�g� see the x���x��plane with x� � ������ In the x��x��plane with
x� � ������ we can see that the vectors of the velocity �eld diverges
from the symmetry axis x� � ����� next to the plate x� � 
�Whereas
the vectors of the velocity �eld next to the plate x� � � converges
into the parallel �ow pattern� The recirculating �ow at the bottom
of the cube is displayed in the x� � x��planes with x� � ����� and

���� Still� we have convergence to the symmetry axis next to the
plate x� � � and divergence next to the plate x� � 
� Again� the
bottom plate x� � � weakens the strength of the �ow� Next to both
plates� the lid and the bottom plate� the vectors of the velocity �eld
are almost parallel� Only in the region x�  ������ the nature of the
�ow diers qualitatively�

Actually� this is the region� where the main stream turns the direc�
tion from positive to negative x��direction� It is very interesting that
in between these parallel �ow regions� two little vortices symmetric
to the x� � 
�� axis develop� see the x� � �x��plane x� � ������ A
real three dimensional phenomenon! And� hereby� we want to close
the discussion of the three�dimensional lid�driven cavity�

�� Concluding Remarks

In this paper� we have developed a solution method for the Stokes
equations in the formulation of the primitive variables� Because� we
use a pressure correction scheme� we end up with Algorithm 
 �Suc�
cessive Poisson Equation��We discretize these Poisson equations with
the tools of the adaptive hierarchical �nite elementmethod� presented
in �
��� In order to satisfy the divergence equation� we use the hier�
archical surplus of the weak divergence �
�� as adaptation criterion�
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For the solution of the arising systems of linear equations� we apply
the multigrid solver� see also �
��� To ensure that not only the �nal�
but also all intermediate steps of the adaptation process� give the
physics correctly� we perform Algorithm � �Adaptive Stokes�� Here�
we �x the depth t for the re�nement steps� until no new grid points
are created� Afterwards� we increase the allowed maximum depth t
by 
�

The discussion of the numerical results shows that the primary
�ow structures for the dierent examples are given correctly� even
for coarse discretizations� All results are quite satisfying and very
encouraging�

In the opinion of the authors� there is a huge potential in the
method of adaptive hierarchical tensor product �nite elements� How�
ever� there are� at least� three main subjects of future work� First�
we have to speed up the outer iteration� because then we can use
much �ner discretizations� This is necessary for the accuracy of the
solutions� Second� we have to implement dierent adaptation criteria�
in order to resolve more details of the �ow patterns� e�g� the coun�
terrotating secondary eddies� In the context of adaptation� it might
also be of interest to re�ne the velocity components and the pressure
separately� leading to dierent grid structures� Finally� we must de�
sign a robust Navier�Stokes solver� In a �rst attempt� we calculated
solutions of the two�dimensional driven cavity with Reynolds number
Re � ���
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